|
from torch import nn |
|
from torch.nn.utils import weight_norm |
|
|
|
|
|
class ResidualStack(nn.Module): |
|
def __init__(self, channels, num_res_blocks, kernel_size): |
|
super().__init__() |
|
|
|
assert (kernel_size - 1) % 2 == 0, " [!] kernel_size has to be odd." |
|
base_padding = (kernel_size - 1) // 2 |
|
|
|
self.blocks = nn.ModuleList() |
|
for idx in range(num_res_blocks): |
|
layer_kernel_size = kernel_size |
|
layer_dilation = layer_kernel_size**idx |
|
layer_padding = base_padding * layer_dilation |
|
self.blocks += [ |
|
nn.Sequential( |
|
nn.LeakyReLU(0.2), |
|
nn.ReflectionPad1d(layer_padding), |
|
weight_norm( |
|
nn.Conv1d(channels, channels, kernel_size=kernel_size, dilation=layer_dilation, bias=True) |
|
), |
|
nn.LeakyReLU(0.2), |
|
weight_norm(nn.Conv1d(channels, channels, kernel_size=1, bias=True)), |
|
) |
|
] |
|
|
|
self.shortcuts = nn.ModuleList( |
|
[weight_norm(nn.Conv1d(channels, channels, kernel_size=1, bias=True)) for i in range(num_res_blocks)] |
|
) |
|
|
|
def forward(self, x): |
|
for block, shortcut in zip(self.blocks, self.shortcuts): |
|
x = shortcut(x) + block(x) |
|
return x |
|
|
|
def remove_weight_norm(self): |
|
for block, shortcut in zip(self.blocks, self.shortcuts): |
|
nn.utils.remove_weight_norm(block[2]) |
|
nn.utils.remove_weight_norm(block[4]) |
|
nn.utils.remove_weight_norm(shortcut) |
|
|