|
import torch |
|
import torch.nn.functional as F |
|
from torch import nn |
|
from torch.nn.utils import weight_norm |
|
|
|
|
|
class Conv1d(nn.Conv1d): |
|
def __init__(self, *args, **kwargs): |
|
super().__init__(*args, **kwargs) |
|
nn.init.orthogonal_(self.weight) |
|
nn.init.zeros_(self.bias) |
|
|
|
|
|
class PositionalEncoding(nn.Module): |
|
"""Positional encoding with noise level conditioning""" |
|
|
|
def __init__(self, n_channels, max_len=10000): |
|
super().__init__() |
|
self.n_channels = n_channels |
|
self.max_len = max_len |
|
self.C = 5000 |
|
self.pe = torch.zeros(0, 0) |
|
|
|
def forward(self, x, noise_level): |
|
if x.shape[2] > self.pe.shape[1]: |
|
self.init_pe_matrix(x.shape[1], x.shape[2], x) |
|
return x + noise_level[..., None, None] + self.pe[:, : x.size(2)].repeat(x.shape[0], 1, 1) / self.C |
|
|
|
def init_pe_matrix(self, n_channels, max_len, x): |
|
pe = torch.zeros(max_len, n_channels) |
|
position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1) |
|
div_term = torch.pow(10000, torch.arange(0, n_channels, 2).float() / n_channels) |
|
|
|
pe[:, 0::2] = torch.sin(position / div_term) |
|
pe[:, 1::2] = torch.cos(position / div_term) |
|
self.pe = pe.transpose(0, 1).to(x) |
|
|
|
|
|
class FiLM(nn.Module): |
|
def __init__(self, input_size, output_size): |
|
super().__init__() |
|
self.encoding = PositionalEncoding(input_size) |
|
self.input_conv = nn.Conv1d(input_size, input_size, 3, padding=1) |
|
self.output_conv = nn.Conv1d(input_size, output_size * 2, 3, padding=1) |
|
|
|
nn.init.xavier_uniform_(self.input_conv.weight) |
|
nn.init.xavier_uniform_(self.output_conv.weight) |
|
nn.init.zeros_(self.input_conv.bias) |
|
nn.init.zeros_(self.output_conv.bias) |
|
|
|
def forward(self, x, noise_scale): |
|
o = self.input_conv(x) |
|
o = F.leaky_relu(o, 0.2) |
|
o = self.encoding(o, noise_scale) |
|
shift, scale = torch.chunk(self.output_conv(o), 2, dim=1) |
|
return shift, scale |
|
|
|
def remove_weight_norm(self): |
|
nn.utils.remove_weight_norm(self.input_conv) |
|
nn.utils.remove_weight_norm(self.output_conv) |
|
|
|
def apply_weight_norm(self): |
|
self.input_conv = weight_norm(self.input_conv) |
|
self.output_conv = weight_norm(self.output_conv) |
|
|
|
|
|
@torch.jit.script |
|
def shif_and_scale(x, scale, shift): |
|
o = shift + scale * x |
|
return o |
|
|
|
|
|
class UBlock(nn.Module): |
|
def __init__(self, input_size, hidden_size, factor, dilation): |
|
super().__init__() |
|
assert isinstance(dilation, (list, tuple)) |
|
assert len(dilation) == 4 |
|
|
|
self.factor = factor |
|
self.res_block = Conv1d(input_size, hidden_size, 1) |
|
self.main_block = nn.ModuleList( |
|
[ |
|
Conv1d(input_size, hidden_size, 3, dilation=dilation[0], padding=dilation[0]), |
|
Conv1d(hidden_size, hidden_size, 3, dilation=dilation[1], padding=dilation[1]), |
|
] |
|
) |
|
self.out_block = nn.ModuleList( |
|
[ |
|
Conv1d(hidden_size, hidden_size, 3, dilation=dilation[2], padding=dilation[2]), |
|
Conv1d(hidden_size, hidden_size, 3, dilation=dilation[3], padding=dilation[3]), |
|
] |
|
) |
|
|
|
def forward(self, x, shift, scale): |
|
x_inter = F.interpolate(x, size=x.shape[-1] * self.factor) |
|
res = self.res_block(x_inter) |
|
o = F.leaky_relu(x_inter, 0.2) |
|
o = F.interpolate(o, size=x.shape[-1] * self.factor) |
|
o = self.main_block[0](o) |
|
o = shif_and_scale(o, scale, shift) |
|
o = F.leaky_relu(o, 0.2) |
|
o = self.main_block[1](o) |
|
res2 = res + o |
|
o = shif_and_scale(res2, scale, shift) |
|
o = F.leaky_relu(o, 0.2) |
|
o = self.out_block[0](o) |
|
o = shif_and_scale(o, scale, shift) |
|
o = F.leaky_relu(o, 0.2) |
|
o = self.out_block[1](o) |
|
o = o + res2 |
|
return o |
|
|
|
def remove_weight_norm(self): |
|
nn.utils.remove_weight_norm(self.res_block) |
|
for _, layer in enumerate(self.main_block): |
|
if len(layer.state_dict()) != 0: |
|
nn.utils.remove_weight_norm(layer) |
|
for _, layer in enumerate(self.out_block): |
|
if len(layer.state_dict()) != 0: |
|
nn.utils.remove_weight_norm(layer) |
|
|
|
def apply_weight_norm(self): |
|
self.res_block = weight_norm(self.res_block) |
|
for idx, layer in enumerate(self.main_block): |
|
if len(layer.state_dict()) != 0: |
|
self.main_block[idx] = weight_norm(layer) |
|
for idx, layer in enumerate(self.out_block): |
|
if len(layer.state_dict()) != 0: |
|
self.out_block[idx] = weight_norm(layer) |
|
|
|
|
|
class DBlock(nn.Module): |
|
def __init__(self, input_size, hidden_size, factor): |
|
super().__init__() |
|
self.factor = factor |
|
self.res_block = Conv1d(input_size, hidden_size, 1) |
|
self.main_block = nn.ModuleList( |
|
[ |
|
Conv1d(input_size, hidden_size, 3, dilation=1, padding=1), |
|
Conv1d(hidden_size, hidden_size, 3, dilation=2, padding=2), |
|
Conv1d(hidden_size, hidden_size, 3, dilation=4, padding=4), |
|
] |
|
) |
|
|
|
def forward(self, x): |
|
size = x.shape[-1] // self.factor |
|
res = self.res_block(x) |
|
res = F.interpolate(res, size=size) |
|
o = F.interpolate(x, size=size) |
|
for layer in self.main_block: |
|
o = F.leaky_relu(o, 0.2) |
|
o = layer(o) |
|
return o + res |
|
|
|
def remove_weight_norm(self): |
|
nn.utils.remove_weight_norm(self.res_block) |
|
for _, layer in enumerate(self.main_block): |
|
if len(layer.state_dict()) != 0: |
|
nn.utils.remove_weight_norm(layer) |
|
|
|
def apply_weight_norm(self): |
|
self.res_block = weight_norm(self.res_block) |
|
for idx, layer in enumerate(self.main_block): |
|
if len(layer.state_dict()) != 0: |
|
self.main_block[idx] = weight_norm(layer) |
|
|