tts / TTS /vocoder /models /wavegrad.py
tobiccino's picture
update ui tacotron
8c70653
raw
history blame
13.8 kB
from dataclasses import dataclass, field
from typing import Dict, List, Tuple
import numpy as np
import torch
from coqpit import Coqpit
from torch import nn
from torch.nn.utils import weight_norm
from torch.utils.data import DataLoader
from torch.utils.data.distributed import DistributedSampler
from trainer.trainer_utils import get_optimizer, get_scheduler
from TTS.utils.io import load_fsspec
from TTS.vocoder.datasets import WaveGradDataset
from TTS.vocoder.layers.wavegrad import Conv1d, DBlock, FiLM, UBlock
from TTS.vocoder.models.base_vocoder import BaseVocoder
from TTS.vocoder.utils.generic_utils import plot_results
@dataclass
class WavegradArgs(Coqpit):
in_channels: int = 80
out_channels: int = 1
use_weight_norm: bool = False
y_conv_channels: int = 32
x_conv_channels: int = 768
dblock_out_channels: List[int] = field(default_factory=lambda: [128, 128, 256, 512])
ublock_out_channels: List[int] = field(default_factory=lambda: [512, 512, 256, 128, 128])
upsample_factors: List[int] = field(default_factory=lambda: [4, 4, 4, 2, 2])
upsample_dilations: List[List[int]] = field(
default_factory=lambda: [[1, 2, 1, 2], [1, 2, 1, 2], [1, 2, 4, 8], [1, 2, 4, 8], [1, 2, 4, 8]]
)
class Wavegrad(BaseVocoder):
"""🐸 🌊 WaveGrad 🌊 model.
Paper - https://arxiv.org/abs/2009.00713
Examples:
Initializing the model.
>>> from TTS.vocoder.configs import WavegradConfig
>>> config = WavegradConfig()
>>> model = Wavegrad(config)
Paper Abstract:
This paper introduces WaveGrad, a conditional model for waveform generation which estimates gradients of the
data density. The model is built on prior work on score matching and diffusion probabilistic models. It starts
from a Gaussian white noise signal and iteratively refines the signal via a gradient-based sampler conditioned
on the mel-spectrogram. WaveGrad offers a natural way to trade inference speed for sample quality by adjusting
the number of refinement steps, and bridges the gap between non-autoregressive and autoregressive models in
terms of audio quality. We find that it can generate high fidelity audio samples using as few as six iterations.
Experiments reveal WaveGrad to generate high fidelity audio, outperforming adversarial non-autoregressive
baselines and matching a strong likelihood-based autoregressive baseline using fewer sequential operations.
Audio samples are available at this https URL.
"""
# pylint: disable=dangerous-default-value
def __init__(self, config: Coqpit):
super().__init__(config)
self.config = config
self.use_weight_norm = config.model_params.use_weight_norm
self.hop_len = np.prod(config.model_params.upsample_factors)
self.noise_level = None
self.num_steps = None
self.beta = None
self.alpha = None
self.alpha_hat = None
self.c1 = None
self.c2 = None
self.sigma = None
# dblocks
self.y_conv = Conv1d(1, config.model_params.y_conv_channels, 5, padding=2)
self.dblocks = nn.ModuleList([])
ic = config.model_params.y_conv_channels
for oc, df in zip(config.model_params.dblock_out_channels, reversed(config.model_params.upsample_factors)):
self.dblocks.append(DBlock(ic, oc, df))
ic = oc
# film
self.film = nn.ModuleList([])
ic = config.model_params.y_conv_channels
for oc in reversed(config.model_params.ublock_out_channels):
self.film.append(FiLM(ic, oc))
ic = oc
# ublocksn
self.ublocks = nn.ModuleList([])
ic = config.model_params.x_conv_channels
for oc, uf, ud in zip(
config.model_params.ublock_out_channels,
config.model_params.upsample_factors,
config.model_params.upsample_dilations,
):
self.ublocks.append(UBlock(ic, oc, uf, ud))
ic = oc
self.x_conv = Conv1d(config.model_params.in_channels, config.model_params.x_conv_channels, 3, padding=1)
self.out_conv = Conv1d(oc, config.model_params.out_channels, 3, padding=1)
if config.model_params.use_weight_norm:
self.apply_weight_norm()
def forward(self, x, spectrogram, noise_scale):
shift_and_scale = []
x = self.y_conv(x)
shift_and_scale.append(self.film[0](x, noise_scale))
for film, layer in zip(self.film[1:], self.dblocks):
x = layer(x)
shift_and_scale.append(film(x, noise_scale))
x = self.x_conv(spectrogram)
for layer, (film_shift, film_scale) in zip(self.ublocks, reversed(shift_and_scale)):
x = layer(x, film_shift, film_scale)
x = self.out_conv(x)
return x
def load_noise_schedule(self, path):
beta = np.load(path, allow_pickle=True).item()["beta"] # pylint: disable=unexpected-keyword-arg
self.compute_noise_level(beta)
@torch.no_grad()
def inference(self, x, y_n=None):
"""
Shapes:
x: :math:`[B, C , T]`
y_n: :math:`[B, 1, T]`
"""
if y_n is None:
y_n = torch.randn(x.shape[0], 1, self.hop_len * x.shape[-1])
else:
y_n = torch.FloatTensor(y_n).unsqueeze(0).unsqueeze(0)
y_n = y_n.type_as(x)
sqrt_alpha_hat = self.noise_level.to(x)
for n in range(len(self.alpha) - 1, -1, -1):
y_n = self.c1[n] * (y_n - self.c2[n] * self.forward(y_n, x, sqrt_alpha_hat[n].repeat(x.shape[0])))
if n > 0:
z = torch.randn_like(y_n)
y_n += self.sigma[n - 1] * z
y_n.clamp_(-1.0, 1.0)
return y_n
def compute_y_n(self, y_0):
"""Compute noisy audio based on noise schedule"""
self.noise_level = self.noise_level.to(y_0)
if len(y_0.shape) == 3:
y_0 = y_0.squeeze(1)
s = torch.randint(0, self.num_steps - 1, [y_0.shape[0]])
l_a, l_b = self.noise_level[s], self.noise_level[s + 1]
noise_scale = l_a + torch.rand(y_0.shape[0]).to(y_0) * (l_b - l_a)
noise_scale = noise_scale.unsqueeze(1)
noise = torch.randn_like(y_0)
noisy_audio = noise_scale * y_0 + (1.0 - noise_scale**2) ** 0.5 * noise
return noise.unsqueeze(1), noisy_audio.unsqueeze(1), noise_scale[:, 0]
def compute_noise_level(self, beta):
"""Compute noise schedule parameters"""
self.num_steps = len(beta)
alpha = 1 - beta
alpha_hat = np.cumprod(alpha)
noise_level = np.concatenate([[1.0], alpha_hat**0.5], axis=0)
noise_level = alpha_hat**0.5
# pylint: disable=not-callable
self.beta = torch.tensor(beta.astype(np.float32))
self.alpha = torch.tensor(alpha.astype(np.float32))
self.alpha_hat = torch.tensor(alpha_hat.astype(np.float32))
self.noise_level = torch.tensor(noise_level.astype(np.float32))
self.c1 = 1 / self.alpha**0.5
self.c2 = (1 - self.alpha) / (1 - self.alpha_hat) ** 0.5
self.sigma = ((1.0 - self.alpha_hat[:-1]) / (1.0 - self.alpha_hat[1:]) * self.beta[1:]) ** 0.5
def remove_weight_norm(self):
for _, layer in enumerate(self.dblocks):
if len(layer.state_dict()) != 0:
try:
nn.utils.remove_weight_norm(layer)
except ValueError:
layer.remove_weight_norm()
for _, layer in enumerate(self.film):
if len(layer.state_dict()) != 0:
try:
nn.utils.remove_weight_norm(layer)
except ValueError:
layer.remove_weight_norm()
for _, layer in enumerate(self.ublocks):
if len(layer.state_dict()) != 0:
try:
nn.utils.remove_weight_norm(layer)
except ValueError:
layer.remove_weight_norm()
nn.utils.remove_weight_norm(self.x_conv)
nn.utils.remove_weight_norm(self.out_conv)
nn.utils.remove_weight_norm(self.y_conv)
def apply_weight_norm(self):
for _, layer in enumerate(self.dblocks):
if len(layer.state_dict()) != 0:
layer.apply_weight_norm()
for _, layer in enumerate(self.film):
if len(layer.state_dict()) != 0:
layer.apply_weight_norm()
for _, layer in enumerate(self.ublocks):
if len(layer.state_dict()) != 0:
layer.apply_weight_norm()
self.x_conv = weight_norm(self.x_conv)
self.out_conv = weight_norm(self.out_conv)
self.y_conv = weight_norm(self.y_conv)
def load_checkpoint(
self, config, checkpoint_path, eval=False, cache=False
): # pylint: disable=unused-argument, redefined-builtin
state = load_fsspec(checkpoint_path, map_location=torch.device("cpu"), cache=cache)
self.load_state_dict(state["model"])
if eval:
self.eval()
assert not self.training
if self.config.model_params.use_weight_norm:
self.remove_weight_norm()
betas = np.linspace(
config["test_noise_schedule"]["min_val"],
config["test_noise_schedule"]["max_val"],
config["test_noise_schedule"]["num_steps"],
)
self.compute_noise_level(betas)
else:
betas = np.linspace(
config["train_noise_schedule"]["min_val"],
config["train_noise_schedule"]["max_val"],
config["train_noise_schedule"]["num_steps"],
)
self.compute_noise_level(betas)
def train_step(self, batch: Dict, criterion: Dict) -> Tuple[Dict, Dict]:
# format data
x = batch["input"]
y = batch["waveform"]
# set noise scale
noise, x_noisy, noise_scale = self.compute_y_n(y)
# forward pass
noise_hat = self.forward(x_noisy, x, noise_scale)
# compute losses
loss = criterion(noise, noise_hat)
return {"model_output": noise_hat}, {"loss": loss}
def train_log( # pylint: disable=no-self-use
self, batch: Dict, outputs: Dict, logger: "Logger", assets: Dict, steps: int # pylint: disable=unused-argument
) -> Tuple[Dict, np.ndarray]:
pass
@torch.no_grad()
def eval_step(self, batch: Dict, criterion: nn.Module) -> Tuple[Dict, Dict]:
return self.train_step(batch, criterion)
def eval_log( # pylint: disable=no-self-use
self, batch: Dict, outputs: Dict, logger: "Logger", assets: Dict, steps: int # pylint: disable=unused-argument
) -> None:
pass
def test(self, assets: Dict, test_loader: "DataLoader", outputs=None): # pylint: disable=unused-argument
# setup noise schedule and inference
ap = assets["audio_processor"]
noise_schedule = self.config["test_noise_schedule"]
betas = np.linspace(noise_schedule["min_val"], noise_schedule["max_val"], noise_schedule["num_steps"])
self.compute_noise_level(betas)
samples = test_loader.dataset.load_test_samples(1)
for sample in samples:
x = sample[0]
x = x[None, :, :].to(next(self.parameters()).device)
y = sample[1]
y = y[None, :]
# compute voice
y_pred = self.inference(x)
# compute spectrograms
figures = plot_results(y_pred, y, ap, "test")
# Sample audio
sample_voice = y_pred[0].squeeze(0).detach().cpu().numpy()
return figures, {"test/audio": sample_voice}
def get_optimizer(self):
return get_optimizer(self.config.optimizer, self.config.optimizer_params, self.config.lr, self)
def get_scheduler(self, optimizer):
return get_scheduler(self.config.lr_scheduler, self.config.lr_scheduler_params, optimizer)
@staticmethod
def get_criterion():
return torch.nn.L1Loss()
@staticmethod
def format_batch(batch: Dict) -> Dict:
# return a whole audio segment
m, y = batch[0], batch[1]
y = y.unsqueeze(1)
return {"input": m, "waveform": y}
def get_data_loader(self, config: Coqpit, assets: Dict, is_eval: True, samples: List, verbose: bool, num_gpus: int):
ap = assets["audio_processor"]
dataset = WaveGradDataset(
ap=ap,
items=samples,
seq_len=self.config.seq_len,
hop_len=ap.hop_length,
pad_short=self.config.pad_short,
conv_pad=self.config.conv_pad,
is_training=not is_eval,
return_segments=True,
use_noise_augment=False,
use_cache=config.use_cache,
verbose=verbose,
)
sampler = DistributedSampler(dataset) if num_gpus > 1 else None
loader = DataLoader(
dataset,
batch_size=self.config.batch_size,
shuffle=num_gpus <= 1,
drop_last=False,
sampler=sampler,
num_workers=self.config.num_eval_loader_workers if is_eval else self.config.num_loader_workers,
pin_memory=False,
)
return loader
def on_epoch_start(self, trainer): # pylint: disable=unused-argument
noise_schedule = self.config["train_noise_schedule"]
betas = np.linspace(noise_schedule["min_val"], noise_schedule["max_val"], noise_schedule["num_steps"])
self.compute_noise_level(betas)
@staticmethod
def init_from_config(config: "WavegradConfig"):
return Wavegrad(config)