|
import argparse |
|
import os |
|
from argparse import RawTextHelpFormatter |
|
|
|
import torch |
|
from tqdm import tqdm |
|
|
|
from TTS.config import load_config |
|
from TTS.config.shared_configs import BaseDatasetConfig |
|
from TTS.tts.datasets import load_tts_samples |
|
from TTS.tts.utils.managers import save_file |
|
from TTS.tts.utils.speakers import SpeakerManager |
|
|
|
parser = argparse.ArgumentParser( |
|
description="""Compute embedding vectors for each audio file in a dataset and store them keyed by `{dataset_name}#{file_path}` in a .pth file\n\n""" |
|
""" |
|
Example runs: |
|
python TTS/bin/compute_embeddings.py --model_path speaker_encoder_model.pth --config_path speaker_encoder_config.json --config_dataset_path dataset_config.json |
|
|
|
python TTS/bin/compute_embeddings.py --model_path speaker_encoder_model.pth --config_path speaker_encoder_config.json --fomatter vctk --dataset_path /path/to/vctk/dataset --dataset_name my_vctk --metafile /path/to/vctk/metafile.csv |
|
""", |
|
formatter_class=RawTextHelpFormatter, |
|
) |
|
parser.add_argument( |
|
"--model_path", |
|
type=str, |
|
help="Path to model checkpoint file. It defaults to the released speaker encoder.", |
|
default="https://github.com/coqui-ai/TTS/releases/download/speaker_encoder_model/model_se.pth.tar", |
|
) |
|
parser.add_argument( |
|
"--config_path", |
|
type=str, |
|
help="Path to model config file. It defaults to the released speaker encoder config.", |
|
default="https://github.com/coqui-ai/TTS/releases/download/speaker_encoder_model/config_se.json", |
|
) |
|
parser.add_argument( |
|
"--config_dataset_path", |
|
type=str, |
|
help="Path to dataset config file. You either need to provide this or `formatter_name`, `dataset_name` and `dataset_path` arguments.", |
|
default=None, |
|
) |
|
parser.add_argument("--output_path", type=str, help="Path for output `pth` or `json` file.", default="speakers.pth") |
|
parser.add_argument("--old_file", type=str, help="Previous embedding file to only compute new audios.", default=None) |
|
parser.add_argument("--disable_cuda", type=bool, help="Flag to disable cuda.", default=False) |
|
parser.add_argument("--no_eval", type=bool, help="Do not compute eval?. Default False", default=False) |
|
parser.add_argument( |
|
"--formatter_name", |
|
type=str, |
|
help="Name of the formatter to use. You either need to provide this or `config_dataset_path`", |
|
default=None, |
|
) |
|
parser.add_argument( |
|
"--dataset_name", |
|
type=str, |
|
help="Name of the dataset to use. You either need to provide this or `config_dataset_path`", |
|
default=None, |
|
) |
|
parser.add_argument( |
|
"--dataset_path", |
|
type=str, |
|
help="Path to the dataset. You either need to provide this or `config_dataset_path`", |
|
default=None, |
|
) |
|
parser.add_argument( |
|
"--metafile", |
|
type=str, |
|
help="Path to the meta file. If not set, dataset formatter uses the default metafile if it is defined in the formatter. You either need to provide this or `config_dataset_path`", |
|
default=None, |
|
) |
|
args = parser.parse_args() |
|
|
|
use_cuda = torch.cuda.is_available() and not args.disable_cuda |
|
|
|
if args.config_dataset_path is not None: |
|
c_dataset = load_config(args.config_dataset_path) |
|
meta_data_train, meta_data_eval = load_tts_samples(c_dataset.datasets, eval_split=not args.no_eval) |
|
else: |
|
c_dataset = BaseDatasetConfig() |
|
c_dataset.formatter = args.formatter_name |
|
c_dataset.dataset_name = args.dataset_name |
|
c_dataset.path = args.dataset_path |
|
c_dataset.meta_file_train = args.metafile if args.metafile else None |
|
meta_data_train, meta_data_eval = load_tts_samples(c_dataset, eval_split=not args.no_eval) |
|
|
|
|
|
if meta_data_eval is None: |
|
samples = meta_data_train |
|
else: |
|
samples = meta_data_train + meta_data_eval |
|
|
|
encoder_manager = SpeakerManager( |
|
encoder_model_path=args.model_path, |
|
encoder_config_path=args.config_path, |
|
d_vectors_file_path=args.old_file, |
|
use_cuda=use_cuda, |
|
) |
|
|
|
class_name_key = encoder_manager.encoder_config.class_name_key |
|
|
|
|
|
speaker_mapping = {} |
|
for idx, fields in enumerate(tqdm(samples)): |
|
class_name = fields[class_name_key] |
|
audio_file = fields["audio_file"] |
|
embedding_key = fields["audio_unique_name"] |
|
root_path = fields["root_path"] |
|
|
|
if args.old_file is not None and embedding_key in encoder_manager.clip_ids: |
|
|
|
embedd = encoder_manager.get_embedding_by_clip(embedding_key) |
|
else: |
|
|
|
embedd = encoder_manager.compute_embedding_from_clip(audio_file) |
|
|
|
|
|
speaker_mapping[embedding_key] = {} |
|
speaker_mapping[embedding_key]["name"] = class_name |
|
speaker_mapping[embedding_key]["embedding"] = embedd |
|
|
|
if speaker_mapping: |
|
|
|
if os.path.isdir(args.output_path): |
|
mapping_file_path = os.path.join(args.output_path, "speakers.pth") |
|
else: |
|
mapping_file_path = args.output_path |
|
|
|
if os.path.dirname(mapping_file_path) != "": |
|
os.makedirs(os.path.dirname(mapping_file_path), exist_ok=True) |
|
|
|
save_file(speaker_mapping, mapping_file_path) |
|
print("Speaker embeddings saved at:", mapping_file_path) |
|
|