tts / TTS /server /server.py
tobiccino's picture
update ui tacotron
8c70653
raw
history blame
6.26 kB
#!flask/bin/python
import argparse
import io
import json
import os
import sys
from pathlib import Path
from threading import Lock
from typing import Union
from flask import Flask, render_template, request, send_file
from TTS.config import load_config
from TTS.utils.manage import ModelManager
from TTS.utils.synthesizer import Synthesizer
def create_argparser():
def convert_boolean(x):
return x.lower() in ["true", "1", "yes"]
parser = argparse.ArgumentParser()
parser.add_argument(
"--list_models",
type=convert_boolean,
nargs="?",
const=True,
default=False,
help="list available pre-trained tts and vocoder models.",
)
parser.add_argument(
"--model_name",
type=str,
default="tts_models/en/ljspeech/tacotron2-DDC",
help="Name of one of the pre-trained tts models in format <language>/<dataset>/<model_name>",
)
parser.add_argument("--vocoder_name", type=str, default=None, help="name of one of the released vocoder models.")
# Args for running custom models
parser.add_argument("--config_path", default=None, type=str, help="Path to model config file.")
parser.add_argument(
"--model_path",
type=str,
default=None,
help="Path to model file.",
)
parser.add_argument(
"--vocoder_path",
type=str,
help="Path to vocoder model file. If it is not defined, model uses GL as vocoder. Please make sure that you installed vocoder library before (WaveRNN).",
default=None,
)
parser.add_argument("--vocoder_config_path", type=str, help="Path to vocoder model config file.", default=None)
parser.add_argument("--speakers_file_path", type=str, help="JSON file for multi-speaker model.", default=None)
parser.add_argument("--port", type=int, default=5002, help="port to listen on.")
parser.add_argument("--use_cuda", type=convert_boolean, default=False, help="true to use CUDA.")
parser.add_argument("--debug", type=convert_boolean, default=False, help="true to enable Flask debug mode.")
parser.add_argument("--show_details", type=convert_boolean, default=False, help="Generate model detail page.")
return parser
# parse the args
args = create_argparser().parse_args()
path = Path(__file__).parent / "../.models.json"
manager = ModelManager(path)
if args.list_models:
manager.list_models()
sys.exit()
# update in-use models to the specified released models.
model_path = None
config_path = None
speakers_file_path = None
vocoder_path = None
vocoder_config_path = None
# CASE1: list pre-trained TTS models
if args.list_models:
manager.list_models()
sys.exit()
# CASE2: load pre-trained model paths
if args.model_name is not None and not args.model_path:
model_path, config_path, model_item = manager.download_model(args.model_name)
args.vocoder_name = model_item["default_vocoder"] if args.vocoder_name is None else args.vocoder_name
if args.vocoder_name is not None and not args.vocoder_path:
vocoder_path, vocoder_config_path, _ = manager.download_model(args.vocoder_name)
# CASE3: set custom model paths
if args.model_path is not None:
model_path = args.model_path
config_path = args.config_path
speakers_file_path = args.speakers_file_path
if args.vocoder_path is not None:
vocoder_path = args.vocoder_path
vocoder_config_path = args.vocoder_config_path
# load models
synthesizer = Synthesizer(
tts_checkpoint=model_path,
tts_config_path=config_path,
tts_speakers_file=speakers_file_path,
tts_languages_file=None,
vocoder_checkpoint=vocoder_path,
vocoder_config=vocoder_config_path,
encoder_checkpoint="",
encoder_config="",
use_cuda=args.use_cuda,
)
use_multi_speaker = hasattr(synthesizer.tts_model, "num_speakers") and (
synthesizer.tts_model.num_speakers > 1 or synthesizer.tts_speakers_file is not None
)
speaker_manager = getattr(synthesizer.tts_model, "speaker_manager", None)
# TODO: set this from SpeakerManager
use_gst = synthesizer.tts_config.get("use_gst", False)
app = Flask(__name__)
def style_wav_uri_to_dict(style_wav: str) -> Union[str, dict]:
"""Transform an uri style_wav, in either a string (path to wav file to be use for style transfer)
or a dict (gst tokens/values to be use for styling)
Args:
style_wav (str): uri
Returns:
Union[str, dict]: path to file (str) or gst style (dict)
"""
if style_wav:
if os.path.isfile(style_wav) and style_wav.endswith(".wav"):
return style_wav # style_wav is a .wav file located on the server
style_wav = json.loads(style_wav)
return style_wav # style_wav is a gst dictionary with {token1_id : token1_weigth, ...}
return None
@app.route("/")
def index():
return render_template(
"index.html",
show_details=args.show_details,
use_multi_speaker=use_multi_speaker,
speaker_ids=speaker_manager.name_to_id if speaker_manager is not None else None,
use_gst=use_gst,
)
@app.route("/details")
def details():
model_config = load_config(args.tts_config)
if args.vocoder_config is not None and os.path.isfile(args.vocoder_config):
vocoder_config = load_config(args.vocoder_config)
else:
vocoder_config = None
return render_template(
"details.html",
show_details=args.show_details,
model_config=model_config,
vocoder_config=vocoder_config,
args=args.__dict__,
)
lock = Lock()
@app.route("/api/tts", methods=["GET"])
def tts():
with lock:
text = request.args.get("text")
speaker_idx = request.args.get("speaker_id", "")
style_wav = request.args.get("style_wav", "")
style_wav = style_wav_uri_to_dict(style_wav)
print(" > Model input: {}".format(text))
print(" > Speaker Idx: {}".format(speaker_idx))
wavs = synthesizer.tts(text, speaker_name=speaker_idx, style_wav=style_wav)
out = io.BytesIO()
synthesizer.save_wav(wavs, out)
return send_file(out, mimetype="audio/wav")
def main():
app.run(debug=args.debug, host="::", port=args.port)
if __name__ == "__main__":
main()