|
import numpy as np |
|
from torch import nn |
|
|
|
|
|
class GBlock(nn.Module): |
|
def __init__(self, in_channels, cond_channels, downsample_factor): |
|
super().__init__() |
|
|
|
self.in_channels = in_channels |
|
self.cond_channels = cond_channels |
|
self.downsample_factor = downsample_factor |
|
|
|
self.start = nn.Sequential( |
|
nn.AvgPool1d(downsample_factor, stride=downsample_factor), |
|
nn.ReLU(), |
|
nn.Conv1d(in_channels, in_channels * 2, kernel_size=3, padding=1), |
|
) |
|
self.lc_conv1d = nn.Conv1d(cond_channels, in_channels * 2, kernel_size=1) |
|
self.end = nn.Sequential( |
|
nn.ReLU(), nn.Conv1d(in_channels * 2, in_channels * 2, kernel_size=3, dilation=2, padding=2) |
|
) |
|
self.residual = nn.Sequential( |
|
nn.Conv1d(in_channels, in_channels * 2, kernel_size=1), |
|
nn.AvgPool1d(downsample_factor, stride=downsample_factor), |
|
) |
|
|
|
def forward(self, inputs, conditions): |
|
outputs = self.start(inputs) + self.lc_conv1d(conditions) |
|
outputs = self.end(outputs) |
|
residual_outputs = self.residual(inputs) |
|
outputs = outputs + residual_outputs |
|
|
|
return outputs |
|
|
|
|
|
class DBlock(nn.Module): |
|
def __init__(self, in_channels, out_channels, downsample_factor): |
|
super().__init__() |
|
|
|
self.in_channels = in_channels |
|
self.downsample_factor = downsample_factor |
|
self.out_channels = out_channels |
|
|
|
self.donwsample_layer = nn.AvgPool1d(downsample_factor, stride=downsample_factor) |
|
self.layers = nn.Sequential( |
|
nn.ReLU(), |
|
nn.Conv1d(in_channels, out_channels, kernel_size=3, padding=1), |
|
nn.ReLU(), |
|
nn.Conv1d(out_channels, out_channels, kernel_size=3, dilation=2, padding=2), |
|
) |
|
self.residual = nn.Sequential( |
|
nn.Conv1d(in_channels, out_channels, kernel_size=1), |
|
) |
|
|
|
def forward(self, inputs): |
|
if self.downsample_factor > 1: |
|
outputs = self.layers(self.donwsample_layer(inputs)) + self.donwsample_layer(self.residual(inputs)) |
|
else: |
|
outputs = self.layers(inputs) + self.residual(inputs) |
|
return outputs |
|
|
|
|
|
class ConditionalDiscriminator(nn.Module): |
|
def __init__(self, in_channels, cond_channels, downsample_factors=(2, 2, 2), out_channels=(128, 256)): |
|
super().__init__() |
|
|
|
assert len(downsample_factors) == len(out_channels) + 1 |
|
|
|
self.in_channels = in_channels |
|
self.cond_channels = cond_channels |
|
self.downsample_factors = downsample_factors |
|
self.out_channels = out_channels |
|
|
|
self.pre_cond_layers = nn.ModuleList() |
|
self.post_cond_layers = nn.ModuleList() |
|
|
|
|
|
self.pre_cond_layers += [DBlock(in_channels, 64, 1)] |
|
in_channels = 64 |
|
for (i, channel) in enumerate(out_channels): |
|
self.pre_cond_layers.append(DBlock(in_channels, channel, downsample_factors[i])) |
|
in_channels = channel |
|
|
|
|
|
self.cond_block = GBlock(in_channels, cond_channels, downsample_factors[-1]) |
|
|
|
|
|
self.post_cond_layers += [ |
|
DBlock(in_channels * 2, in_channels * 2, 1), |
|
DBlock(in_channels * 2, in_channels * 2, 1), |
|
nn.AdaptiveAvgPool1d(1), |
|
nn.Conv1d(in_channels * 2, 1, kernel_size=1), |
|
] |
|
|
|
def forward(self, inputs, conditions): |
|
batch_size = inputs.size()[0] |
|
outputs = inputs.view(batch_size, self.in_channels, -1) |
|
for layer in self.pre_cond_layers: |
|
outputs = layer(outputs) |
|
outputs = self.cond_block(outputs, conditions) |
|
for layer in self.post_cond_layers: |
|
outputs = layer(outputs) |
|
|
|
return outputs |
|
|
|
|
|
class UnconditionalDiscriminator(nn.Module): |
|
def __init__(self, in_channels, base_channels=64, downsample_factors=(8, 4), out_channels=(128, 256)): |
|
super().__init__() |
|
|
|
self.downsample_factors = downsample_factors |
|
self.in_channels = in_channels |
|
self.downsample_factors = downsample_factors |
|
self.out_channels = out_channels |
|
|
|
self.layers = nn.ModuleList() |
|
self.layers += [DBlock(self.in_channels, base_channels, 1)] |
|
in_channels = base_channels |
|
for (i, factor) in enumerate(downsample_factors): |
|
self.layers.append(DBlock(in_channels, out_channels[i], factor)) |
|
in_channels *= 2 |
|
self.layers += [ |
|
DBlock(in_channels, in_channels, 1), |
|
DBlock(in_channels, in_channels, 1), |
|
nn.AdaptiveAvgPool1d(1), |
|
nn.Conv1d(in_channels, 1, kernel_size=1), |
|
] |
|
|
|
def forward(self, inputs): |
|
batch_size = inputs.size()[0] |
|
outputs = inputs.view(batch_size, self.in_channels, -1) |
|
for layer in self.layers: |
|
outputs = layer(outputs) |
|
return outputs |
|
|
|
|
|
class RandomWindowDiscriminator(nn.Module): |
|
"""Random Window Discriminator as described in |
|
http://arxiv.org/abs/1909.11646""" |
|
|
|
def __init__( |
|
self, |
|
cond_channels, |
|
hop_length, |
|
uncond_disc_donwsample_factors=(8, 4), |
|
cond_disc_downsample_factors=((8, 4, 2, 2, 2), (8, 4, 2, 2), (8, 4, 2), (8, 4), (4, 2, 2)), |
|
cond_disc_out_channels=((128, 128, 256, 256), (128, 256, 256), (128, 256), (256,), (128, 256)), |
|
window_sizes=(512, 1024, 2048, 4096, 8192), |
|
): |
|
|
|
super().__init__() |
|
self.cond_channels = cond_channels |
|
self.window_sizes = window_sizes |
|
self.hop_length = hop_length |
|
self.base_window_size = self.hop_length * 2 |
|
self.ks = [ws // self.base_window_size for ws in window_sizes] |
|
|
|
|
|
assert len(cond_disc_downsample_factors) == len(cond_disc_out_channels) == len(window_sizes) |
|
for ws in window_sizes: |
|
assert ws % hop_length == 0 |
|
|
|
for idx, cf in enumerate(cond_disc_downsample_factors): |
|
assert np.prod(cf) == hop_length // self.ks[idx] |
|
|
|
|
|
self.unconditional_discriminators = nn.ModuleList([]) |
|
for k in self.ks: |
|
layer = UnconditionalDiscriminator( |
|
in_channels=k, base_channels=64, downsample_factors=uncond_disc_donwsample_factors |
|
) |
|
self.unconditional_discriminators.append(layer) |
|
|
|
self.conditional_discriminators = nn.ModuleList([]) |
|
for idx, k in enumerate(self.ks): |
|
layer = ConditionalDiscriminator( |
|
in_channels=k, |
|
cond_channels=cond_channels, |
|
downsample_factors=cond_disc_downsample_factors[idx], |
|
out_channels=cond_disc_out_channels[idx], |
|
) |
|
self.conditional_discriminators.append(layer) |
|
|
|
def forward(self, x, c): |
|
scores = [] |
|
feats = [] |
|
|
|
for (window_size, layer) in zip(self.window_sizes, self.unconditional_discriminators): |
|
index = np.random.randint(x.shape[-1] - window_size) |
|
|
|
score = layer(x[:, :, index : index + window_size]) |
|
scores.append(score) |
|
|
|
|
|
for (window_size, layer) in zip(self.window_sizes, self.conditional_discriminators): |
|
frame_size = window_size // self.hop_length |
|
lc_index = np.random.randint(c.shape[-1] - frame_size) |
|
sample_index = lc_index * self.hop_length |
|
x_sub = x[:, :, sample_index : (lc_index + frame_size) * self.hop_length] |
|
c_sub = c[:, :, lc_index : lc_index + frame_size] |
|
|
|
score = layer(x_sub, c_sub) |
|
scores.append(score) |
|
return scores, feats |
|
|