import argparse import os from argparse import RawTextHelpFormatter import torch from tqdm import tqdm from TTS.config import load_config from TTS.config.shared_configs import BaseDatasetConfig from TTS.tts.datasets import load_tts_samples from TTS.tts.utils.managers import save_file from TTS.tts.utils.speakers import SpeakerManager parser = argparse.ArgumentParser( description="""Compute embedding vectors for each audio file in a dataset and store them keyed by `{dataset_name}#{file_path}` in a .pth file\n\n""" """ Example runs: python TTS/bin/compute_embeddings.py --model_path speaker_encoder_model.pth --config_path speaker_encoder_config.json --config_dataset_path dataset_config.json python TTS/bin/compute_embeddings.py --model_path speaker_encoder_model.pth --config_path speaker_encoder_config.json --fomatter vctk --dataset_path /path/to/vctk/dataset --dataset_name my_vctk --metafile /path/to/vctk/metafile.csv """, formatter_class=RawTextHelpFormatter, ) parser.add_argument( "--model_path", type=str, help="Path to model checkpoint file. It defaults to the released speaker encoder.", default="https://github.com/coqui-ai/TTS/releases/download/speaker_encoder_model/model_se.pth.tar", ) parser.add_argument( "--config_path", type=str, help="Path to model config file. It defaults to the released speaker encoder config.", default="https://github.com/coqui-ai/TTS/releases/download/speaker_encoder_model/config_se.json", ) parser.add_argument( "--config_dataset_path", type=str, help="Path to dataset config file. You either need to provide this or `formatter_name`, `dataset_name` and `dataset_path` arguments.", default=None, ) parser.add_argument("--output_path", type=str, help="Path for output `pth` or `json` file.", default="speakers.pth") parser.add_argument("--old_file", type=str, help="Previous embedding file to only compute new audios.", default=None) parser.add_argument("--disable_cuda", type=bool, help="Flag to disable cuda.", default=False) parser.add_argument("--no_eval", type=bool, help="Do not compute eval?. Default False", default=False) parser.add_argument( "--formatter_name", type=str, help="Name of the formatter to use. You either need to provide this or `config_dataset_path`", default=None, ) parser.add_argument( "--dataset_name", type=str, help="Name of the dataset to use. You either need to provide this or `config_dataset_path`", default=None, ) parser.add_argument( "--dataset_path", type=str, help="Path to the dataset. You either need to provide this or `config_dataset_path`", default=None, ) parser.add_argument( "--metafile", type=str, help="Path to the meta file. If not set, dataset formatter uses the default metafile if it is defined in the formatter. You either need to provide this or `config_dataset_path`", default=None, ) args = parser.parse_args() use_cuda = torch.cuda.is_available() and not args.disable_cuda if args.config_dataset_path is not None: c_dataset = load_config(args.config_dataset_path) meta_data_train, meta_data_eval = load_tts_samples(c_dataset.datasets, eval_split=not args.no_eval) else: c_dataset = BaseDatasetConfig() c_dataset.formatter = args.formatter_name c_dataset.dataset_name = args.dataset_name c_dataset.path = args.dataset_path c_dataset.meta_file_train = args.metafile if args.metafile else None meta_data_train, meta_data_eval = load_tts_samples(c_dataset, eval_split=not args.no_eval) if meta_data_eval is None: samples = meta_data_train else: samples = meta_data_train + meta_data_eval encoder_manager = SpeakerManager( encoder_model_path=args.model_path, encoder_config_path=args.config_path, d_vectors_file_path=args.old_file, use_cuda=use_cuda, ) class_name_key = encoder_manager.encoder_config.class_name_key # compute speaker embeddings speaker_mapping = {} for idx, fields in enumerate(tqdm(samples)): class_name = fields[class_name_key] audio_file = fields["audio_file"] embedding_key = fields["audio_unique_name"] root_path = fields["root_path"] if args.old_file is not None and embedding_key in encoder_manager.clip_ids: # get the embedding from the old file embedd = encoder_manager.get_embedding_by_clip(embedding_key) else: # extract the embedding embedd = encoder_manager.compute_embedding_from_clip(audio_file) # create speaker_mapping if target dataset is defined speaker_mapping[embedding_key] = {} speaker_mapping[embedding_key]["name"] = class_name speaker_mapping[embedding_key]["embedding"] = embedd if speaker_mapping: # save speaker_mapping if target dataset is defined if os.path.isdir(args.output_path): mapping_file_path = os.path.join(args.output_path, "speakers.pth") else: mapping_file_path = args.output_path if os.path.dirname(mapping_file_path) != "": os.makedirs(os.path.dirname(mapping_file_path), exist_ok=True) save_file(speaker_mapping, mapping_file_path) print("Speaker embeddings saved at:", mapping_file_path)