from torch import nn from torch.nn.utils import weight_norm class ResidualStack(nn.Module): def __init__(self, channels, num_res_blocks, kernel_size): super().__init__() assert (kernel_size - 1) % 2 == 0, " [!] kernel_size has to be odd." base_padding = (kernel_size - 1) // 2 self.blocks = nn.ModuleList() for idx in range(num_res_blocks): layer_kernel_size = kernel_size layer_dilation = layer_kernel_size**idx layer_padding = base_padding * layer_dilation self.blocks += [ nn.Sequential( nn.LeakyReLU(0.2), nn.ReflectionPad1d(layer_padding), weight_norm( nn.Conv1d(channels, channels, kernel_size=kernel_size, dilation=layer_dilation, bias=True) ), nn.LeakyReLU(0.2), weight_norm(nn.Conv1d(channels, channels, kernel_size=1, bias=True)), ) ] self.shortcuts = nn.ModuleList( [weight_norm(nn.Conv1d(channels, channels, kernel_size=1, bias=True)) for i in range(num_res_blocks)] ) def forward(self, x): for block, shortcut in zip(self.blocks, self.shortcuts): x = shortcut(x) + block(x) return x def remove_weight_norm(self): for block, shortcut in zip(self.blocks, self.shortcuts): nn.utils.remove_weight_norm(block[2]) nn.utils.remove_weight_norm(block[4]) nn.utils.remove_weight_norm(shortcut)