Spaces:
Sleeping
Sleeping
Create requirements.txt and update README
Browse files- README.md +10 -72
- requirements.txt +6 -0
README.md
CHANGED
@@ -1,78 +1,16 @@
|
|
1 |
-
#
|
2 |
|
3 |
-
##
|
4 |
|
5 |
-
|
6 |
-
|
7 |
-
### Set up conda environment
|
8 |
-
|
9 |
-
This library has been tested with
|
10 |
-
|
11 |
-
- PyTorch 1.5, 1.6, 1.7
|
12 |
-
- Python 3.8
|
13 |
-
And that's all you need. Other versions of Python may also work,
|
14 |
-
but on-the-fly ninja compilation only works for PyTorch 1.5+.
|
15 |
-
|
16 |
-
### Example
|
17 |
-
|
18 |
-
```python
|
19 |
-
import numpyAc
|
20 |
-
import numpy as np
|
21 |
-
|
22 |
-
# Generate random symbols and pdf.
|
23 |
-
dim = 128
|
24 |
-
symsNum = 2000
|
25 |
-
pdf = np.random.rand(symsNum,dim)
|
26 |
-
pdf = pdf / (np.sum(pdf,1,keepdims=True))
|
27 |
-
sym = np.random.randint(0,dim,symsNum,dtype=np.int16)
|
28 |
-
output_pdf = pdf
|
29 |
-
|
30 |
-
# Encode to bytestream.
|
31 |
-
codec = numpyAc.arithmeticCoding()
|
32 |
-
byte_stream,real_bits = codec.encode(pdf, sym,'out.b')
|
33 |
-
|
34 |
-
# Number of bits taken by the stream.
|
35 |
-
print('real_bits',real_bits)
|
36 |
-
|
37 |
-
# Theoretical bits number
|
38 |
-
print('shannon entropy',-int(np.log2(pdf[range(0,symsNum),sym]).sum()))
|
39 |
-
|
40 |
-
# Decode from bytestream.
|
41 |
-
decodec = numpyAc.arithmeticDeCoding(None,symsNum,dim,'out.b')
|
42 |
-
|
43 |
-
# Autoregressive decoding and output will be equal to the input.
|
44 |
-
for i,s in enumerate(sym):
|
45 |
-
assert decodec.decode(output_pdf[i:i+1,:]) == s
|
46 |
```
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
The probabilities are specified as [PDFs](https://en.wikipedia.org/wiki/Probability_density_function).
|
54 |
-
For each possible symbol, we need one PDF. This means that if there are `symsNum` possible symbols, and the values of them are distributed in `{0, ..., dim-1}`. The PDF ( shape (`symsNum,dim`) ) must specified the value for `symsNum` symbols.
|
55 |
-
|
56 |
-
**Example**:
|
57 |
-
|
58 |
```
|
59 |
-
For a symsNum = 1 particular symbol, let's say we have dim = 3 possible values.
|
60 |
-
We can draw 4 CDF from 3 PDF to specify the symbols distribution:
|
61 |
-
|
62 |
-
symbol: 0 1 2
|
63 |
-
pdf: P(0) P(1) P(2)
|
64 |
-
cdf: C_0 C_1 C_2 C_3
|
65 |
-
|
66 |
-
This corresponds to the 3 probabilities
|
67 |
|
68 |
-
|
69 |
-
P(1) = C_2 - C_1
|
70 |
-
P(2) = C_3 - C_2
|
71 |
|
72 |
-
|
73 |
-
NOTE: The arithmetic coder assumes that P(0) + P(1) + P(2) = 1, C_0 = 0, C_3 = 1
|
74 |
-
```
|
75 |
-
The theoretical bits number can be estimated by Shannon’s source coding theorem:
|
76 |
-
![](https://latex.codecogs.com/svg.image?\\sum_{s}-log_2P(s))
|
77 |
-
## Citation
|
78 |
-
Reference from [torchac](https://github.com/fab-jul/torchac), thanks!
|
|
|
1 |
+
# Python file compressor
|
2 |
|
3 |
+
## Usage
|
4 |
|
5 |
+
Install dependencies
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
```
|
7 |
+
pip install -r requirements.txt
|
8 |
+
```
|
9 |
+
Run app
|
10 |
+
```
|
11 |
+
streamlit run app.py
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
+
## Results
|
|
|
|
|
15 |
|
16 |
+
We achieve about 10x compression using 1.1B model. Compressing 100 lines file takes around 10s on GPU.
|
|
|
|
|
|
|
|
|
|
|
|
requirements.txt
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
transformers >= 4.33.1
|
2 |
+
tokenizers>=0.13.3
|
3 |
+
torch
|
4 |
+
streamlit
|
5 |
+
ninja
|
6 |
+
protobuf==3.20
|