3v324v23's picture
add
c310e19
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
import torch
from torch import nn
from torch.autograd import Function
from torch.autograd.function import once_differentiable
from torch.nn.modules.utils import _pair
from maskrcnn_benchmark import _C
from apex import amp
class _ROIAlign(Function):
@staticmethod
def forward(ctx, input, roi, output_size, spatial_scale, sampling_ratio):
ctx.save_for_backward(roi)
ctx.output_size = _pair(output_size)
ctx.spatial_scale = spatial_scale
ctx.sampling_ratio = sampling_ratio
ctx.input_shape = input.size()
output = _C.roi_align_forward(
input, roi, spatial_scale, output_size[0], output_size[1], sampling_ratio
)
return output
@staticmethod
@once_differentiable
def backward(ctx, grad_output):
rois, = ctx.saved_tensors
output_size = ctx.output_size
spatial_scale = ctx.spatial_scale
sampling_ratio = ctx.sampling_ratio
bs, ch, h, w = ctx.input_shape
grad_input = _C.roi_align_backward(
grad_output,
rois,
spatial_scale,
output_size[0],
output_size[1],
bs,
ch,
h,
w,
sampling_ratio,
)
return grad_input, None, None, None, None
roi_align = _ROIAlign.apply
class ROIAlign(nn.Module):
def __init__(self, output_size, spatial_scale, sampling_ratio):
super(ROIAlign, self).__init__()
self.output_size = output_size
self.spatial_scale = spatial_scale
self.sampling_ratio = sampling_ratio
@amp.float_function
def forward(self, input, rois):
return roi_align(
input, rois, self.output_size, self.spatial_scale, self.sampling_ratio
)
def __repr__(self):
tmpstr = self.__class__.__name__ + "("
tmpstr += "output_size=" + str(self.output_size)
tmpstr += ", spatial_scale=" + str(self.spatial_scale)
tmpstr += ", sampling_ratio=" + str(self.sampling_ratio)
tmpstr += ")"
return tmpstr