3v324v23's picture
add
c310e19
import os
import cv2
import torch
from torchvision import transforms as T
from maskrcnn_benchmark.modeling.detector import build_detection_model
from maskrcnn_benchmark.utils.checkpoint import DetectronCheckpointer
from maskrcnn_benchmark.structures.image_list import to_image_list
from maskrcnn_benchmark.config import cfg
from maskrcnn_benchmark.utils.chars import getstr_grid, get_tight_rect
from PIL import Image
import numpy as np
import argparse
class TextDemo(object):
def __init__(
self,
cfg,
confidence_threshold=0.7,
min_image_size=224,
output_polygon=True
):
self.cfg = cfg.clone()
self.model = build_detection_model(cfg)
self.model.eval()
self.device = torch.device(cfg.MODEL.DEVICE)
self.model.to(self.device)
self.min_image_size = min_image_size
checkpointer = DetectronCheckpointer(cfg, self.model)
_ = checkpointer.load(cfg.MODEL.WEIGHT)
self.transforms = self.build_transform()
self.cpu_device = torch.device("cpu")
self.confidence_threshold = confidence_threshold
self.output_polygon = output_polygon
def build_transform(self):
"""
Creates a basic transformation that was used to train the models
"""
cfg = self.cfg
# we are loading images with OpenCV, so we don't need to convert them
# to BGR, they are already! So all we need to do is to normalize
# by 255 if we want to convert to BGR255 format, or flip the channels
# if we want it to be in RGB in [0-1] range.
if cfg.INPUT.TO_BGR255:
to_bgr_transform = T.Lambda(lambda x: x * 255)
else:
to_bgr_transform = T.Lambda(lambda x: x[[2, 1, 0]])
normalize_transform = T.Normalize(
mean=cfg.INPUT.PIXEL_MEAN, std=cfg.INPUT.PIXEL_STD
)
transform = T.Compose(
[
T.ToPILImage(),
T.Resize(self.min_image_size),
T.ToTensor(),
to_bgr_transform,
normalize_transform,
]
)
return transform
def run_on_opencv_image(self, image):
"""
Arguments:
image (np.ndarray): an image as returned by OpenCV
Returns:
result_polygons (list): detection results
result_words (list): recognition results
"""
result_polygons, result_words = self.compute_prediction(image)
return result_polygons, result_words
def compute_prediction(self, original_image):
# apply pre-processing to image
image = self.transforms(original_image)
# convert to an ImageList, padded so that it is divisible by
# cfg.DATALOADER.SIZE_DIVISIBILITY
image_list = to_image_list(image, self.cfg.DATALOADER.SIZE_DIVISIBILITY)
image_list = image_list.to(self.device)
# compute predictions
with torch.no_grad():
predictions, _, _ = self.model(image_list)
global_predictions = predictions[0]
char_predictions = predictions[1]
char_mask = char_predictions['char_mask']
char_boxes = char_predictions['boxes']
words, rec_scores = self.process_char_mask(char_mask, char_boxes)
seq_words = char_predictions['seq_outputs']
seq_scores = char_predictions['seq_scores']
global_predictions = [o.to(self.cpu_device) for o in global_predictions]
# always single image is passed at a time
global_prediction = global_predictions[0]
# reshape prediction (a BoxList) into the original image size
height, width = original_image.shape[:-1]
global_prediction = global_prediction.resize((width, height))
boxes = global_prediction.bbox.tolist()
scores = global_prediction.get_field("scores").tolist()
masks = global_prediction.get_field("mask").cpu().numpy()
result_polygons = []
result_words = []
for k, box in enumerate(boxes):
score = scores[k]
if score < self.confidence_threshold:
continue
box = list(map(int, box))
mask = masks[k,0,:,:]
polygon = self.mask2polygon(mask, box, original_image.shape, threshold=0.5, output_polygon=self.output_polygon)
if polygon is None:
polygon = [box[0], box[1], box[2], box[1], box[2], box[3], box[0], box[3]]
result_polygons.append(polygon)
word = words[k]
rec_score = rec_scores[k]
seq_word = seq_words[k]
seq_char_scores = seq_scores[k]
seq_score = sum(seq_char_scores) / float(len(seq_char_scores))
if seq_score > rec_score:
result_words.append(seq_word)
else:
result_words.append(word)
return result_polygons, result_words
def process_char_mask(self, char_masks, boxes, threshold=192):
texts, rec_scores = [], []
for index in range(char_masks.shape[0]):
box = list(boxes[index])
box = list(map(int, box))
text, rec_score, _, _ = getstr_grid(char_masks[index,:,:,:].copy(), box, threshold=threshold)
texts.append(text)
rec_scores.append(rec_score)
return texts, rec_scores
def mask2polygon(self, mask, box, im_size, threshold=0.5, output_polygon=True):
# mask 32*128
image_width, image_height = im_size[1], im_size[0]
box_h = box[3] - box[1]
box_w = box[2] - box[0]
cls_polys = (mask*255).astype(np.uint8)
poly_map = np.array(Image.fromarray(cls_polys).resize((box_w, box_h)))
poly_map = poly_map.astype(np.float32) / 255
poly_map=cv2.GaussianBlur(poly_map,(3,3),sigmaX=3)
ret, poly_map = cv2.threshold(poly_map,0.5,1,cv2.THRESH_BINARY)
if output_polygon:
SE1=cv2.getStructuringElement(cv2.MORPH_RECT,(3,3))
poly_map = cv2.erode(poly_map,SE1)
poly_map = cv2.dilate(poly_map,SE1);
poly_map = cv2.morphologyEx(poly_map,cv2.MORPH_CLOSE,SE1)
try:
_, contours, _ = cv2.findContours((poly_map * 255).astype(np.uint8), cv2.RETR_LIST, cv2.CHAIN_APPROX_NONE)
except:
contours, _ = cv2.findContours((poly_map * 255).astype(np.uint8), cv2.RETR_LIST, cv2.CHAIN_APPROX_NONE)
if len(contours)==0:
print(contours)
print(len(contours))
return None
max_area=0
max_cnt = contours[0]
for cnt in contours:
area=cv2.contourArea(cnt)
if area > max_area:
max_area = area
max_cnt = cnt
perimeter = cv2.arcLength(max_cnt,True)
epsilon = 0.01*cv2.arcLength(max_cnt,True)
approx = cv2.approxPolyDP(max_cnt,epsilon,True)
pts = approx.reshape((-1,2))
pts[:,0] = pts[:,0] + box[0]
pts[:,1] = pts[:,1] + box[1]
polygon = list(pts.reshape((-1,)))
polygon = list(map(int, polygon))
if len(polygon)<6:
return None
else:
SE1=cv2.getStructuringElement(cv2.MORPH_RECT,(3,3))
poly_map = cv2.erode(poly_map,SE1)
poly_map = cv2.dilate(poly_map,SE1);
poly_map = cv2.morphologyEx(poly_map,cv2.MORPH_CLOSE,SE1)
idy,idx=np.where(poly_map == 1)
xy=np.vstack((idx,idy))
xy=np.transpose(xy)
hull = cv2.convexHull(xy, clockwise=True)
#reverse order of points.
if hull is None:
return None
hull=hull[::-1]
#find minimum area bounding box.
rect = cv2.minAreaRect(hull)
corners = cv2.boxPoints(rect)
corners = np.array(corners, dtype="int")
pts = get_tight_rect(corners, box[0], box[1], image_height, image_width, 1)
polygon = [x * 1.0 for x in pts]
polygon = list(map(int, polygon))
return polygon
def visualization(self, image, polygons, words):
for polygon, word in zip(polygons, words):
pts = np.array(polygon, np.int32)
pts = pts.reshape((-1,1,2))
xmin = min(pts[:,0,0])
ymin = min(pts[:,0,1])
cv2.polylines(image,[pts],True,(0,0,255))
cv2.putText(image, word, (xmin, ymin), cv2.FONT_HERSHEY_COMPLEX, 1, (0,0,255), 2)
def main(args):
# update the config options with the config file
cfg.merge_from_file(args.config_file)
# manual override some options
# cfg.merge_from_list(["MODEL.DEVICE", "cpu"])
text_demo = TextDemo(
cfg,
min_image_size=800,
confidence_threshold=0.7,
output_polygon=True
)
# load image and then run prediction
image = cv2.imread(args.image_path)
result_polygons, result_words = text_demo.run_on_opencv_image(image)
text_demo.visualization(image, result_polygons, result_words)
cv2.imwrite(args.visu_path, image)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='parameters for demo')
parser.add_argument("--config-file", type=str, default='configs/mixtrain/seg_rec_poly_fuse_feature.yaml')
parser.add_argument("--image_path", type=str, default='./demo_images/demo.jpg')
parser.add_argument("--visu_path", type=str, default='./demo_images/demo_results.jpg')
args = parser.parse_args()
main(args)