Spaces:
Sleeping
Sleeping
File size: 6,951 Bytes
f3dfbd4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 |
"""
Main Streamlit application for the CRE Chatbot.
"""
import logging
import streamlit as st
from io import BytesIO
import sys
import os
# Add the project root to Python path
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
from app.config import validate_config, AZURE_OPENAI_DEPLOYMENT_NAME
from app.logging import setup_logging
from src.pdf_processor import PDFProcessor
from src.rag_engine import RAGEngine
# Setup logging
loggers = setup_logging()
logger = logging.getLogger('app')
# Page configuration
st.set_page_config(
page_title="CRE Knowledge Assistant",
page_icon="π’",
layout="wide",
initial_sidebar_state="expanded"
)
# Custom CSS
st.markdown("""
<style>
.main {
background-color: #f5f5f5;
}
.stApp {
max-width: 1200px;
margin: 0 auto;
}
.chat-message {
padding: 1.5rem;
border-radius: 0.5rem;
margin-bottom: 1rem;
display: flex;
flex-direction: column;
}
.chat-message.user {
background-color: #e3f2fd;
}
.chat-message.assistant {
background-color: #f3e5f5;
}
.chat-message .message {
margin-top: 0.5rem;
}
</style>
""", unsafe_allow_html=True)
# Initialize session state
if 'rag_engine' not in st.session_state:
st.session_state.rag_engine = None
if 'pdf_processor' not in st.session_state:
st.session_state.pdf_processor = PDFProcessor()
if 'chat_history' not in st.session_state:
st.session_state.chat_history = []
if 'uploaded_pdfs' not in st.session_state:
st.session_state.uploaded_pdfs = set()
def initialize_rag_engine(deployment_name: str):
"""Initialize the RAG engine with error handling."""
try:
st.session_state.rag_engine = RAGEngine(deployment_name)
logger.info("RAG Engine initialized successfully")
except Exception as e:
logger.error(f"Error initializing the application: {str(e)}")
st.error(f"Error initializing the application: {str(e)}")
def process_pdf(pdf_file):
"""Process uploaded PDF file."""
try:
# Check if PDF was already processed
if pdf_file.name in st.session_state.uploaded_pdfs:
st.warning(f"'{pdf_file.name}' has already been processed!")
return
with st.spinner(f"Processing {pdf_file.name}..."):
# Read PDF content
pdf_content = pdf_file.read()
# Process PDF and get chunks
chunks = st.session_state.pdf_processor.process_pdf(
BytesIO(pdf_content)
)
# Add chunks to vector store
texts = [chunk[0] for chunk in chunks]
metadata = [{"source": pdf_file.name, **chunk[1]} for chunk in chunks]
st.session_state.rag_engine.add_documents(texts, metadata)
# Mark PDF as processed
st.session_state.uploaded_pdfs.add(pdf_file.name)
st.success(f"Successfully processed '{pdf_file.name}'!")
logger.info(f"PDF '{pdf_file.name}' processed and added to vector store")
except Exception as e:
logger.error(f"Error processing PDF: {str(e)}")
st.error(f"Error processing PDF: {str(e)}")
def display_chat_message(role: str, content: str):
"""Display a chat message with proper styling."""
with st.container():
st.markdown(f"""
<div class="chat-message {role}">
<div class="role"><strong>{'You' if role == 'user' else 'Assistant'}:</strong></div>
<div class="message">{content}</div>
</div>
""", unsafe_allow_html=True)
def main():
"""Main application function."""
# Header
col1, col2 = st.columns([2, 1])
with col1:
st.title("π’ CRE Knowledge Assistant")
st.markdown("*Your AI guide for commercial real estate concepts*")
# Sidebar
with st.sidebar:
st.header("π Knowledge Base")
st.markdown("Upload your CRE documents to enhance the assistant's knowledge.")
# Model configuration (collapsible)
with st.expander("βοΈ Model Configuration"):
deployment_name = st.text_input(
"Model Deployment Name",
value=AZURE_OPENAI_DEPLOYMENT_NAME,
help="Enter your Azure OpenAI model deployment name"
)
# Initialize RAG engine if not already done
if not st.session_state.rag_engine:
initialize_rag_engine(deployment_name)
# PDF upload section
st.subheader("π Upload Documents")
uploaded_files = st.file_uploader(
"Choose PDF files",
type="pdf",
accept_multiple_files=True,
help="Upload one or more PDF files to add to the knowledge base"
)
if uploaded_files:
for pdf_file in uploaded_files:
process_pdf(pdf_file)
# Show processed documents
if st.session_state.uploaded_pdfs:
st.subheader("π Processed Documents")
for pdf_name in st.session_state.uploaded_pdfs:
st.markdown(f"β {pdf_name}")
# Main chat interface
if st.session_state.rag_engine:
# Display chat history
for message in st.session_state.chat_history:
display_chat_message(
role=message["role"],
content=message["content"]
)
# Chat input
user_question = st.text_input(
"Ask a question about commercial real estate:",
placeholder="e.g., What is LTV? How is DSCR calculated?",
key="user_question"
)
if user_question:
try:
# Add user message to chat
st.session_state.chat_history.append({
"role": "user",
"content": user_question
})
with st.spinner("Generating answer..."):
response = st.session_state.rag_engine.query(user_question)
# Add assistant response to chat
st.session_state.chat_history.append({
"role": "assistant",
"content": response["answer"]
})
# Display latest messages immediately
display_chat_message("user", user_question)
display_chat_message("assistant", response["answer"])
except Exception as e:
logger.error(f"Error generating answer: {str(e)}")
st.error(f"Error generating answer: {str(e)}")
else:
st.info("π Please upload PDF documents in the sidebar to start asking questions!")
if __name__ == "__main__":
main()
|