File size: 2,789 Bytes
af40894
39397b0
 
 
455e74b
 
 
 
 
 
39397b0
455e74b
39397b0
 
 
 
 
7fbef3a
 
 
af40894
27c78c7
455e74b
 
 
 
 
 
39cb2e3
a4e0c15
57864f0
a4e0c15
fb05ecc
 
8551fc2
fc1aea8
8551fc2
1c6a1fb
 
298f398
39cb2e3
8551fc2
39cb2e3
3bb139d
57864f0
3bb139d
 
e0b6d19
b4c67b2
3bb139d
 
 
 
 
a4e0c15
3bb139d
af40894
badd9c9
121d761
4342456
d38b403
3c44dbb
298f398
4342456
3bb139d
af40894
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
import gradio as gr
import torch
from diffusers import StableDiffusionPipeline, DPMSolverMultistepScheduler

import numpy as np
import os
import cv2
from PIL import Image, ImageDraw
import insightface
from insightface.app import FaceAnalysis

# Diffusion
model_base = "runwayml/stable-diffusion-v1-5"

pipe = StableDiffusionPipeline.from_pretrained(model_base, torch_dtype=torch.float16, use_safetensors=True, safety_checker=None,)
pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)

lora_model_path = "./loralucy3/checkpoint-95000"
pipe.unet.load_attn_procs(lora_model_path)
pipe.to("cuda")


# Insightface model
app = FaceAnalysis(name='buffalo_l')
app.prepare(ctx_id=0, det_size=(640, 640))



def greet(description,color,features,occasion,type_):
    
    prompt = 'white background '
    
    description = 'description:' + description.replace(' ', '-')

    color = ' color:' + ','.join(color)

    features = ' features:' + ','.join(features)

    occasion = ' occasion:' + ','.join(occasion)

    type_ = ' type:' + ','.join(type_)
   
    prompt += description + color + features +  occasion + type_

    print('prompt:',prompt)
    image = pipe(
        prompt,
        negative_prompt='deformed face,bad anatomy',
        width=312,
        height=512,
        num_inference_steps=100,
        guidance_scale=7.5,
        cross_attention_kwargs={"scale": 1.0}
        ).images[0]
    
    return image

iface = gr.Interface(fn=greet, 
                     inputs=[gr.Textbox(label='Description'),
                            gr.Dropdown(label='Color',choices=['Beige','Black','Blue','Brown','Green','Grey','Orange','Pink','Purple','Red','White','Yellow'],multiselect=True),
                            gr.Dropdown(label='Features',choices=['3/4-sleeve','Babydoll','Closed-Back','Corset','Crochet','Cutouts','Draped','Floral','Gloves','Halter','Lace','Long','Long-Sleeve','Midi','No-Slit','Off-The-Shoulder','One-Shoulder','Open-Back','Pockets','Print','Puff-Sleeve','Ruched','Satin','Sequins','Shimmer','Short','Short-Sleeve','Side-Slit','Square-Neck','Strapless','Sweetheart-Neck','Tight','V-Neck','Velvet','Wrap'],multiselect=True),
                            gr.Dropdown(label='Occasion',choices=['Homecoming','Casual','Wedding-Guest','Festival','Sorority','Day','Vacation','Summer','Pool-Party','Birthday','Date-Night','Party','Holiday','Winter-Formal','Valentines-Day','Prom','Graduation'],multiselect=True),
                            gr.Dropdown(label='Type',choices=['Mini-Dresses','Midi-Dresses','Maxi-Dresses','Two-Piece-Sets','Rompers','Jeans','Jumpsuits','Pants','Tops','Jumpers/Cardigans','Skirts','Shorts','Bodysuits','Swimwear'],multiselect=True),
                            ], 
                     outputs="image")
iface.launch()