File size: 3,823 Bytes
af40894
39397b0
 
 
455e74b
 
 
 
 
 
39397b0
455e74b
39397b0
 
 
 
 
7fbef3a
 
 
af40894
27c78c7
455e74b
 
 
 
 
e59fe16
 
14a6d29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
455e74b
e88d5b2
 
 
57864f0
fb05ecc
8551fc2
 
1c6a1fb
39cb2e3
8551fc2
39cb2e3
3bb139d
57864f0
3bb139d
 
e0b6d19
7b0620b
 
3bb139d
 
 
 
10ef849
e59fe16
 
a4e0c15
3bb139d
af40894
badd9c9
121d761
4342456
d38b403
3c44dbb
298f398
854187b
4342456
7b0620b
af40894
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
import gradio as gr
import torch
from diffusers import StableDiffusionPipeline, DPMSolverMultistepScheduler

import numpy as np
import os
import cv2
from PIL import Image, ImageDraw
import insightface
from insightface.app import FaceAnalysis

# Diffusion
model_base = "runwayml/stable-diffusion-v1-5"

pipe = StableDiffusionPipeline.from_pretrained(model_base, torch_dtype=torch.float16, use_safetensors=True, safety_checker=None,)
pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)

lora_model_path = "./loralucy3/checkpoint-95000"
pipe.unet.load_attn_procs(lora_model_path)
pipe.to("cuda")


# Insightface model
app = FaceAnalysis(name='buffalo_l')
app.prepare(ctx_id=0, det_size=(640, 640))


def face_swap(src_img, dest_img):
    src_img = Image.open('./images/' + src_img + '.JPG')
    
    # Convert to RGB
    src_img = src_img.convert(mode='RGB')
    dest_img = dest_img.convert(mode='RGB')

    # Convert to array
    src_img_arr = np.asarray(src_img)
    dest_img_arr = np.asarray(dest_img)

    # Face detection
    src_faces = app.get(src_img_arr)
    dest_faces = app.get(dest_img_arr)

    # Initialize swapper
    swapper = insightface.model_zoo.get_model('inswapper_128.onnx', download=False, download_zip=False)

    # Swap face
    res = dest_img_arr.copy()
    for face in dest_faces:
    	res = swapper.get(res, face, src_faces[0], paste_back=True)

    # Convert to PIL image
    final_image = Image.fromarray(np.uint8(res)).convert('RGB')

    return final_image 


def greet(description,color,features,occasion,type_,face):

    # Parse input
    prompt = 'white background '
    description = 'description:' + description.replace(' ', '-')
    color = ' color:' + ','.join(color)
    features = ' features:' + ','.join(features)
    occasion = ' occasion:' + ','.join(occasion)
    type_ = ' type:' + ','.join(type_)
   
    prompt += description + color + features +  occasion + type_

    print('prompt:',prompt)
    image = pipe(
        prompt,
        negative_prompt='deformed face,bad anatomy',
        width=312,
        height=512,
        num_inference_steps=100,
        guidance_scale=7.5,
        cross_attention_kwargs={"scale": 1.0}
        ).images[0]

    if(face != 'Normal'):
        image = face_swap(face, image)
    
    return image

iface = gr.Interface(fn=greet, 
                     inputs=[gr.Textbox(label='Description'),
                            gr.Dropdown(label='Color',choices=['Beige','Black','Blue','Brown','Green','Grey','Orange','Pink','Purple','Red','White','Yellow'],multiselect=True),
                            gr.Dropdown(label='Features',choices=['3/4-sleeve','Babydoll','Closed-Back','Corset','Crochet','Cutouts','Draped','Floral','Gloves','Halter','Lace','Long','Long-Sleeve','Midi','No-Slit','Off-The-Shoulder','One-Shoulder','Open-Back','Pockets','Print','Puff-Sleeve','Ruched','Satin','Sequins','Shimmer','Short','Short-Sleeve','Side-Slit','Square-Neck','Strapless','Sweetheart-Neck','Tight','V-Neck','Velvet','Wrap'],multiselect=True),
                            gr.Dropdown(label='Occasion',choices=['Homecoming','Casual','Wedding-Guest','Festival','Sorority','Day','Vacation','Summer','Pool-Party','Birthday','Date-Night','Party','Holiday','Winter-Formal','Valentines-Day','Prom','Graduation'],multiselect=True),
                            gr.Dropdown(label='Type',choices=['Mini-Dresses','Midi-Dresses','Maxi-Dresses','Two-Piece-Sets','Rompers','Jeans','Jumpsuits','Pants','Tops','Jumpers/Cardigans','Skirts','Shorts','Bodysuits','Swimwear'],multiselect=True),
                            gr.Dropdown(label='Face',choices=['Normal','Cat','Lisa','Mila'], value='Normal'),
                            ], 
                     outputs=gr.Image(type="pil", label="Final Image", width=312, height=512))
iface.launch()