Spaces:
Running
on
Zero
Running
on
Zero
File size: 3,823 Bytes
af40894 39397b0 455e74b 39397b0 455e74b 39397b0 7fbef3a af40894 27c78c7 455e74b e59fe16 14a6d29 455e74b e88d5b2 57864f0 fb05ecc 8551fc2 1c6a1fb 39cb2e3 8551fc2 39cb2e3 3bb139d 57864f0 3bb139d e0b6d19 7b0620b 3bb139d 10ef849 e59fe16 a4e0c15 3bb139d af40894 badd9c9 121d761 4342456 d38b403 3c44dbb 298f398 854187b 4342456 7b0620b af40894 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 |
import gradio as gr
import torch
from diffusers import StableDiffusionPipeline, DPMSolverMultistepScheduler
import numpy as np
import os
import cv2
from PIL import Image, ImageDraw
import insightface
from insightface.app import FaceAnalysis
# Diffusion
model_base = "runwayml/stable-diffusion-v1-5"
pipe = StableDiffusionPipeline.from_pretrained(model_base, torch_dtype=torch.float16, use_safetensors=True, safety_checker=None,)
pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)
lora_model_path = "./loralucy3/checkpoint-95000"
pipe.unet.load_attn_procs(lora_model_path)
pipe.to("cuda")
# Insightface model
app = FaceAnalysis(name='buffalo_l')
app.prepare(ctx_id=0, det_size=(640, 640))
def face_swap(src_img, dest_img):
src_img = Image.open('./images/' + src_img + '.JPG')
# Convert to RGB
src_img = src_img.convert(mode='RGB')
dest_img = dest_img.convert(mode='RGB')
# Convert to array
src_img_arr = np.asarray(src_img)
dest_img_arr = np.asarray(dest_img)
# Face detection
src_faces = app.get(src_img_arr)
dest_faces = app.get(dest_img_arr)
# Initialize swapper
swapper = insightface.model_zoo.get_model('inswapper_128.onnx', download=False, download_zip=False)
# Swap face
res = dest_img_arr.copy()
for face in dest_faces:
res = swapper.get(res, face, src_faces[0], paste_back=True)
# Convert to PIL image
final_image = Image.fromarray(np.uint8(res)).convert('RGB')
return final_image
def greet(description,color,features,occasion,type_,face):
# Parse input
prompt = 'white background '
description = 'description:' + description.replace(' ', '-')
color = ' color:' + ','.join(color)
features = ' features:' + ','.join(features)
occasion = ' occasion:' + ','.join(occasion)
type_ = ' type:' + ','.join(type_)
prompt += description + color + features + occasion + type_
print('prompt:',prompt)
image = pipe(
prompt,
negative_prompt='deformed face,bad anatomy',
width=312,
height=512,
num_inference_steps=100,
guidance_scale=7.5,
cross_attention_kwargs={"scale": 1.0}
).images[0]
if(face != 'Normal'):
image = face_swap(face, image)
return image
iface = gr.Interface(fn=greet,
inputs=[gr.Textbox(label='Description'),
gr.Dropdown(label='Color',choices=['Beige','Black','Blue','Brown','Green','Grey','Orange','Pink','Purple','Red','White','Yellow'],multiselect=True),
gr.Dropdown(label='Features',choices=['3/4-sleeve','Babydoll','Closed-Back','Corset','Crochet','Cutouts','Draped','Floral','Gloves','Halter','Lace','Long','Long-Sleeve','Midi','No-Slit','Off-The-Shoulder','One-Shoulder','Open-Back','Pockets','Print','Puff-Sleeve','Ruched','Satin','Sequins','Shimmer','Short','Short-Sleeve','Side-Slit','Square-Neck','Strapless','Sweetheart-Neck','Tight','V-Neck','Velvet','Wrap'],multiselect=True),
gr.Dropdown(label='Occasion',choices=['Homecoming','Casual','Wedding-Guest','Festival','Sorority','Day','Vacation','Summer','Pool-Party','Birthday','Date-Night','Party','Holiday','Winter-Formal','Valentines-Day','Prom','Graduation'],multiselect=True),
gr.Dropdown(label='Type',choices=['Mini-Dresses','Midi-Dresses','Maxi-Dresses','Two-Piece-Sets','Rompers','Jeans','Jumpsuits','Pants','Tops','Jumpers/Cardigans','Skirts','Shorts','Bodysuits','Swimwear'],multiselect=True),
gr.Dropdown(label='Face',choices=['Normal','Cat','Lisa','Mila'], value='Normal'),
],
outputs=gr.Image(type="pil", label="Final Image", width=312, height=512))
iface.launch() |