import gradio as gr import torch from diffusers import StableDiffusionPipeline, DPMSolverMultistepScheduler import numpy as np import os import cv2 from PIL import Image, ImageDraw import insightface from insightface.app import FaceAnalysis # Diffusion model_base = "runwayml/stable-diffusion-v1-5" pipe = StableDiffusionPipeline.from_pretrained(model_base, torch_dtype=torch.float16, use_safetensors=True, safety_checker=None,) pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) lora_model_path = "./loralucy3/checkpoint-95000" pipe.unet.load_attn_procs(lora_model_path) pipe.to("cuda") # Insightface model app = FaceAnalysis(name='buffalo_l') app.prepare(ctx_id=0, det_size=(640, 640)) def face_swap(src_img, dest_img): src_img = Image.open('./images/' + src_img + '.JPG') # Convert to RGB src_img = src_img.convert(mode='RGB') dest_img = dest_img.convert(mode='RGB') # Convert to array src_img_arr = np.asarray(src_img) dest_img_arr = np.asarray(dest_img) # Face detection src_faces = app.get(src_img_arr) dest_faces = app.get(dest_img_arr) # Initialize swapper swapper = insightface.model_zoo.get_model('inswapper_128.onnx', download=False, download_zip=False) # Swap face res = dest_img_arr.copy() for face in dest_faces: res = swapper.get(res, face, src_faces[0], paste_back=True) # Convert to PIL image final_image = Image.fromarray(np.uint8(res)).convert('RGB') return final_image def greet(description,color,features,occasion,type_,face): # Parse input prompt = 'white background ' description = 'description:' + description.replace(' ', '-') color = ' color:' + ','.join(color) features = ' features:' + ','.join(features) occasion = ' occasion:' + ','.join(occasion) type_ = ' type:' + ','.join(type_) prompt += description + color + features + occasion + type_ print('prompt:',prompt) image = pipe( prompt, negative_prompt='deformed face,bad anatomy', width=312, height=512, num_inference_steps=100, guidance_scale=7.5, cross_attention_kwargs={"scale": 1.0} ).images[0] if(face != 'Normal'): image = face_swap(face, image) return image iface = gr.Interface(fn=greet, inputs=[gr.Textbox(label='Description'), gr.Dropdown(label='Color',choices=['Beige','Black','Blue','Brown','Green','Grey','Orange','Pink','Purple','Red','White','Yellow'],multiselect=True), gr.Dropdown(label='Features',choices=['3/4-sleeve','Babydoll','Closed-Back','Corset','Crochet','Cutouts','Draped','Floral','Gloves','Halter','Lace','Long','Long-Sleeve','Midi','No-Slit','Off-The-Shoulder','One-Shoulder','Open-Back','Pockets','Print','Puff-Sleeve','Ruched','Satin','Sequins','Shimmer','Short','Short-Sleeve','Side-Slit','Square-Neck','Strapless','Sweetheart-Neck','Tight','V-Neck','Velvet','Wrap'],multiselect=True), gr.Dropdown(label='Occasion',choices=['Homecoming','Casual','Wedding-Guest','Festival','Sorority','Day','Vacation','Summer','Pool-Party','Birthday','Date-Night','Party','Holiday','Winter-Formal','Valentines-Day','Prom','Graduation'],multiselect=True), gr.Dropdown(label='Type',choices=['Mini-Dresses','Midi-Dresses','Maxi-Dresses','Two-Piece-Sets','Rompers','Jeans','Jumpsuits','Pants','Tops','Jumpers/Cardigans','Skirts','Shorts','Bodysuits','Swimwear'],multiselect=True), gr.Dropdown(label='Face',choices=['Normal','Cat','Lisa','Mila'], value='Normal'), ], outputs=gr.Image(type="pil", label="Final Image", width=312, height=512)) iface.launch()