File size: 4,160 Bytes
6fb487c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
70c7f04
6fb487c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
70c7f04
6fb487c
70c7f04
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6fb487c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
import requests
import json
import networkx as nx
import matplotlib.pyplot as plt
from fuzzywuzzy import fuzz
from fuzzywuzzy import process
from lib.memory import *


class APIRequester:
    def __init__(self):
        pass

    def make_request(self, url):
        response = requests.get(url)
        if response.status_code == 200:
            return response.json()
        else:
            return None

class Grapher:
    def __init__(self, memoria_nlp, threshold=70):
        self.threshold = threshold
        self.graph = nx.Graph()
        self.memoria_nlp = memoria_nlp

    def parse_json(self, data, parent=None):
        if isinstance(data, dict):
            for key, value in data.items():
                if parent:
                    self.graph.add_node(parent)
                    self.graph.add_node(key)
                    self.graph.add_edge(parent, key)

                    for node in self.graph.nodes():
                        if node != parent and fuzz.ratio(node, key) >= self.threshold:
                            self.graph = nx.contracted_nodes(self.graph, node, key, self_loops=False)

                self.memoria_nlp.agregar_concepto("keys", [(key, 1.0)])

                if isinstance(value, (dict, list)):
                    self.parse_json(value, key)
                else:
                    self.memoria_nlp.agregar_concepto("values", [(str(value), 1.0)])
                    if parent:
                        self.graph.add_node(value)
                        self.graph.add_edge(key, value)

                        for node in self.graph.nodes():
                            if node != value and fuzz.ratio(node, value) >= self.threshold:
                                self.graph = nx.contracted_nodes(self.graph, node, value, self_loops=False)
        elif isinstance(data, list):
            for item in data:
                self.parse_json(item, parent)

    def draw_graph(self):
        pos = nx.spring_layout(self.graph, seed=42)
        nx.draw(self.graph, pos, with_labels=True, node_size=700, node_color='skyblue', font_size=10, font_weight='bold')
        plt.title("JSON Graph")
        plt.show()

    def guardar_en_memoria(self):
        keys = self.memoria_nlp.obtener_conceptos_acotados(100)
        with open("memoria.json", "w") as file:
            json.dump(keys, file)
            
    def buscar_nodo(self, nodo):
        return process.extractOne(nodo, self.graph.nodes())[0]
    
    def eliminar_nodo(self, nodo):
        self.graph.remove_node(nodo)
    
    def agregar_nodo(self, nodo):
        self.graph.add_node(nodo)
    
    def distancia_entre_nodos(self, nodo1, nodo2):
        return nx.shortest_path_length(self.graph, source=nodo1, target=nodo2)
    
    def ruta_entre_nodos(self, nodo1, nodo2):
        return nx.shortest_path(self.graph, source=nodo1, target=nodo2)
    
    def unir_grafos(self, otro_grafo, umbral):
        for nodo in otro_grafo.nodes():
            nodo_similar = process.extractOne(nodo, self.graph.nodes())[0]
            if fuzz.ratio(nodo, nodo_similar) >= umbral:
                self.graph = nx.contracted_nodes(self.graph, nodo_similar, nodo, self_loops=False)
            else:
                self.graph.add_node(nodo)
                for vecino in otro_grafo.neighbors(nodo):
                    self.graph.add_edge(nodo, vecino)


if __name__ == "__main__":

    # Ejemplo de uso
    memoria_nlp = MemoriaRobotNLP(max_size=100)
    json_parser = JSONParser(memoria_nlp)

    api_requester = APIRequester()
    url = "https://jsonplaceholder.typicode.com/posts"
    data = api_requester.make_request(url)

    if data:
        json_parser.parse_json(data)
        json_parser.draw_graph()
        
        otro_parser = JSONParser(MemoriaRobotNLP(max_size=100))
        otro_parser.parse_json({"id": 101, "title": "New Title", "userId": 11})
        
        print("Uniendo los grafos...")
        json_parser.unir_grafos(otro_parser.graph, umbral=80)
        print("Grafo unido:")
        json_parser.draw_graph()
        
        json_parser.guardar_en_memoria()
    else:
        print("Error al realizar la solicitud a la API.")