Spaces:
Runtime error
Runtime error
import pipes | |
class ModelManager: | |
def __init__(self): | |
self.models = {} # Un diccionario para almacenar los modelos disponibles | |
def list_models(self): | |
return list(self.models.keys()) | |
def add_model(self, pipe_func, model_name, args): | |
self.models[model_name] = {"pipeline": pipe_func, "args": args} | |
def load_transformers_model(self, model_name, args): | |
if hasattr(pipes, model_name): | |
pipe_func = getattr(pipes, model_name) | |
self.add_model(pipe_func, model_name, args) | |
else: | |
print(f"Error: {model_name} no está definido en el módulo pipes.") | |
def train_transformers_model(self, model_name, train_dataset, eval_dataset, training_args): | |
if model_name not in self.models: | |
print(f"Error: {model_name} no está en la lista de modelos disponibles.") | |
return | |
pipeline = self.models[model_name]["pipeline"] | |
pipeline.train(train_dataset=train_dataset, eval_dataset=eval_dataset, training_args=training_args) | |
def test_model(self, model_name, test_dataset): | |
if model_name not in self.models: | |
print(f"Error: {model_name} no está en la lista de modelos disponibles.") | |
return | |
pipeline = self.models[model_name]["pipeline"] | |
return pipeline.test(test_dataset) | |
def remove_model(self, model_name): | |
if model_name in self.models: | |
del self.models[model_name] | |
else: | |
print(f"Error: {model_name} no está en la lista de modelos disponibles.") | |
def execute_model(self, model_name, *args, **kwargs): | |
if model_name not in self.models: | |
print(f"Error: {model_name} no está en la lista de modelos disponibles.") | |
return None | |
pipe_func = self.models[model_name]["pipeline"] | |
args = self.models[model_name]["args"] | |
return pipe_func(*args, **kwargs) | |
def choose_best_pipeline(self, prompt, task): | |
available_pipelines = self.models.keys() | |
best_pipeline = None | |
best_score = float('-inf') | |
for pipeline_name in available_pipelines: | |
pipeline = self.models[pipeline_name]["pipeline"] | |
score = self.evaluate_pipeline(pipeline, prompt, task) | |
if score > best_score: | |
best_score = score | |
best_pipeline = pipeline_name | |
return best_pipeline | |
def evaluate_pipeline(self, pipeline, prompt, task): | |
# Aquí puedes implementar la lógica para evaluar qué pipeline es mejor para la tarea específica | |
# En este ejemplo, utilizamos la métrica de exactitud para el análisis de sentimiento | |
if task == "sentiment_analysis": | |
# Supongamos que test_dataset contiene pares de (texto, etiqueta) para análisis de sentimiento | |
test_dataset = [("Texto de prueba 1", "positivo"), ("Texto de prueba 2", "negativo")] | |
correct_predictions = 0 | |
total_predictions = len(test_dataset) | |
for text, label in test_dataset: | |
prediction = pipeline(text) | |
if prediction == label: | |
correct_predictions += 1 | |
accuracy = correct_predictions / total_predictions | |
return accuracy | |
else: | |
# Implementa la lógica de evaluación para otras tareas aquí | |
return 0.5 # Por ahora, retornamos un valor de evaluación arbitrario | |
# Ejemplo de uso | |
if __name__ == "__main__": | |
manager = ModelManager() | |
# Añadir pipelines | |
manager.load_transformers_model("sentiment_tags", args={}) | |
manager.load_transformers_model("entity_pos_tagger", args={}) | |
# Decidir qué pipeline usar para el análisis de sentimiento | |
prompt = "Este es un texto de ejemplo para analizar el sentimiento." | |
task = "sentiment_analysis" | |
best_pipeline = manager.choose_best_pipeline(prompt, task) | |
print(f"La mejor pipa para {task} es: {best_pipeline}") | |