Spaces:
Paused
Paused
import torch | |
from torch.utils.data import Dataset | |
def causal_mask(size): | |
mask = torch.triu(torch.ones(1, size, size), diagonal=1).type(torch.int) | |
return mask == 0 | |
class BilingualDataset(Dataset): | |
def __init__(self, ds, tokenizer_src, tokenizer_tgt, src_lang, tgt_lang, seq_len): | |
self.ds = ds | |
self.tokenizer_src = tokenizer_src | |
self.tokenizer_tgt = tokenizer_tgt | |
self.src_lang = src_lang | |
self.tgt_lang = tgt_lang | |
self.seq_len = seq_len | |
self.sos_token = torch.tensor([tokenizer_src.token_to_id('[SOS]')], dtype=torch.int64) | |
self.eos_token = torch.tensor([tokenizer_src.token_to_id('[EOS]')], dtype=torch.int64) | |
self.pad_token = torch.tensor([tokenizer_src.token_to_id('[PAD]')], dtype=torch.int64) | |
def __len__(self): | |
return len(self.ds) | |
def __getitem__(self, index): | |
src_target_pair = self.ds[index] | |
src_text = src_target_pair['translation'][self.src_lang] | |
tgt_text = src_target_pair['translation'][self.tgt_lang] | |
enc_input_tokens = self.tokenizer_src.encode(src_text).ids | |
dec_input_tokens = self.tokenizer_tgt.encode(tgt_text).ids | |
enc_num_padding_tokens = self.seq_len - len(enc_input_tokens) - 2 | |
dec_num_padding_tokens = self.seq_len - len(dec_input_tokens) - 1 | |
if enc_num_padding_tokens < 8 or dec_num_padding_tokens < 8: | |
raise ValueError('Sequence too long') | |
encoder_input = torch.cat( | |
[ | |
self.sos_token, | |
torch.tensor(enc_input_tokens, dtype=torch.int64), | |
self.eos_token, | |
torch.tensor([self.pad_token] * enc_num_padding_tokens, dtype=torch.int64) | |
] | |
) | |
decoder_input = torch.cat( | |
[ | |
self.sos_token, | |
torch.tensor(dec_input_tokens, dtype=torch.int64), | |
torch.tensor([self.pad_token] * dec_num_padding_tokens, dtype=torch.int64) | |
] | |
) | |
label = torch.cat( | |
[ | |
torch.tensor(dec_input_tokens, dtype=torch.int64), | |
self.eos_token, | |
torch.tensor([self.pad_token] * dec_num_padding_tokens, dtype=torch.int64) | |
] | |
) | |
return { | |
"encoder_input": encoder_input, | |
"decoder_input": decoder_input, | |
"encoder_mask": (encoder_input != self.pad_token).unsqueeze(0).unsqueeze(0).int(), | |
"decoder_mask": (decoder_input != self.pad_token).unsqueeze(0).unsqueeze(0).int() & causal_mask(decoder_input.size(0)), | |
"label": label, | |
"src_text": src_text, | |
"tgt_text": tgt_text | |
} | |