import torch from torch.utils.data import Dataset def causal_mask(size): mask = torch.triu(torch.ones(1, size, size), diagonal=1).type(torch.int) return mask == 0 class BilingualDataset(Dataset): def __init__(self, ds, tokenizer_src, tokenizer_tgt, src_lang, tgt_lang, seq_len): self.ds = ds self.tokenizer_src = tokenizer_src self.tokenizer_tgt = tokenizer_tgt self.src_lang = src_lang self.tgt_lang = tgt_lang self.seq_len = seq_len self.sos_token = torch.tensor([tokenizer_src.token_to_id('[SOS]')], dtype=torch.int64) self.eos_token = torch.tensor([tokenizer_src.token_to_id('[EOS]')], dtype=torch.int64) self.pad_token = torch.tensor([tokenizer_src.token_to_id('[PAD]')], dtype=torch.int64) def __len__(self): return len(self.ds) def __getitem__(self, index): src_target_pair = self.ds[index] src_text = src_target_pair['translation'][self.src_lang] tgt_text = src_target_pair['translation'][self.tgt_lang] enc_input_tokens = self.tokenizer_src.encode(src_text).ids dec_input_tokens = self.tokenizer_tgt.encode(tgt_text).ids enc_num_padding_tokens = self.seq_len - len(enc_input_tokens) - 2 dec_num_padding_tokens = self.seq_len - len(dec_input_tokens) - 1 if enc_num_padding_tokens < 8 or dec_num_padding_tokens < 8: raise ValueError('Sequence too long') encoder_input = torch.cat( [ self.sos_token, torch.tensor(enc_input_tokens, dtype=torch.int64), self.eos_token, torch.tensor([self.pad_token] * enc_num_padding_tokens, dtype=torch.int64) ] ) decoder_input = torch.cat( [ self.sos_token, torch.tensor(dec_input_tokens, dtype=torch.int64), torch.tensor([self.pad_token] * dec_num_padding_tokens, dtype=torch.int64) ] ) label = torch.cat( [ torch.tensor(dec_input_tokens, dtype=torch.int64), self.eos_token, torch.tensor([self.pad_token] * dec_num_padding_tokens, dtype=torch.int64) ] ) return { "encoder_input": encoder_input, "decoder_input": decoder_input, "encoder_mask": (encoder_input != self.pad_token).unsqueeze(0).unsqueeze(0).int(), "decoder_mask": (decoder_input != self.pad_token).unsqueeze(0).unsqueeze(0).int() & causal_mask(decoder_input.size(0)), "label": label, "src_text": src_text, "tgt_text": tgt_text }