Spaces:
Sleeping
Sleeping
vhr1007
commited on
Commit
·
7d54a46
1
Parent(s):
9db95db
debug
Browse files
app.py
CHANGED
@@ -77,7 +77,7 @@ class SearchDocumentsRequest(BaseModel):
|
|
77 |
limit: int = 3
|
78 |
|
79 |
class GenerateRAGRequest(BaseModel):
|
80 |
-
|
81 |
|
82 |
|
83 |
@app.get("/")
|
@@ -135,7 +135,7 @@ async def generate_rag_response_api(
|
|
135 |
logging.info("Starting document search")
|
136 |
|
137 |
# Encode the query using the custom embedding function
|
138 |
-
query_embedding = embed_text(body.
|
139 |
print(body.query)
|
140 |
collection_name = "embed" # Use the collection name where the embeddings are stored
|
141 |
# Perform search using the precomputed embeddings
|
@@ -148,7 +148,7 @@ async def generate_rag_response_api(
|
|
148 |
logging.info("Generating RAG response")
|
149 |
|
150 |
# Generate the RAG response using the retrieved documents
|
151 |
-
response, error = generate_rag_response(hits, body.
|
152 |
|
153 |
if error:
|
154 |
logging.error(f"Generate RAG response error: {error}")
|
|
|
77 |
limit: int = 3
|
78 |
|
79 |
class GenerateRAGRequest(BaseModel):
|
80 |
+
query: str
|
81 |
|
82 |
|
83 |
@app.get("/")
|
|
|
135 |
logging.info("Starting document search")
|
136 |
|
137 |
# Encode the query using the custom embedding function
|
138 |
+
query_embedding = embed_text(body.query)
|
139 |
print(body.query)
|
140 |
collection_name = "embed" # Use the collection name where the embeddings are stored
|
141 |
# Perform search using the precomputed embeddings
|
|
|
148 |
logging.info("Generating RAG response")
|
149 |
|
150 |
# Generate the RAG response using the retrieved documents
|
151 |
+
response, error = generate_rag_response(hits, body.query)
|
152 |
|
153 |
if error:
|
154 |
logging.error(f"Generate RAG response error: {error}")
|