File size: 31,318 Bytes
581eeac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
import functools
from functools import partial
from typing import Any, Dict, Optional, Tuple, Union

import chex
import jax
import jax.numpy as jnp
import numpy as np
from chex._src.pytypes import PRNGKey
from gymnax.environments import environment, spaces
from gymnax.environments.environment import TEnvParams, TEnvState
from gymnax.environments.spaces import Space
from jax import lax

from jax2d.engine import PhysicsEngine, create_empty_sim, recalculate_mass_and_inertia
from jax2d.sim_state import CollisionManifold, SimState
from kinetix.environment.env_state import EnvParams, EnvState, StaticEnvParams
from kinetix.environment.wrappers import (
    AutoReplayWrapper,
    AutoResetWrapper,
    UnderspecifiedToGymnaxWrapper,
    DenseRewardWrapper,
    LogWrapper,
)

from kinetix.pcg.pcg import env_state_to_pcg_state, sample_pcg_state
from kinetix.pcg.pcg_state import PCGState
from kinetix.render.renderer_symbolic_entity import make_render_entities
from kinetix.render.renderer_pixels import make_render_pixels, make_render_pixels_rl
from kinetix.render.renderer_symbolic_flat import make_render_symbolic

from kinetix.util.saving import load_pcg_state_pickle
from jaxued.environments import UnderspecifiedEnv


def create_empty_env(static_env_params):
    sim_state = create_empty_sim(static_env_params)
    return EnvState(
        timestep=0,
        thruster_bindings=jnp.zeros(static_env_params.num_thrusters, dtype=jnp.int32),
        motor_bindings=jnp.zeros(static_env_params.num_joints, dtype=jnp.int32),
        motor_auto=jnp.zeros(static_env_params.num_joints, dtype=bool),
        polygon_shape_roles=jnp.zeros(static_env_params.num_polygons, dtype=jnp.int32),
        circle_shape_roles=jnp.zeros(static_env_params.num_circles, dtype=jnp.int32),
        polygon_highlighted=jnp.zeros(static_env_params.num_polygons, dtype=bool),
        circle_highlighted=jnp.zeros(static_env_params.num_circles, dtype=bool),
        polygon_densities=jnp.ones(static_env_params.num_polygons, dtype=jnp.float32),
        circle_densities=jnp.ones(static_env_params.num_circles, dtype=jnp.float32),
        **sim_state.__dict__,
    )


def index_motor_actions(
    action: jnp.ndarray,
    state: EnvState,
    clip_min=None,
    clip_max=None,
):
    # Expand the motor actions to all joints with the same colour
    return jnp.clip(action[state.motor_bindings], clip_min, clip_max)


def index_thruster_actions(
    action: jnp.ndarray,
    state: EnvState,
    clip_min=None,
    clip_max=None,
):
    # Expand the thruster actions to all joints with the same colour
    return jnp.clip(action[state.thruster_bindings], clip_min, clip_max)


def convert_continuous_actions(
    action: jnp.ndarray, state: SimState, static_env_params: StaticEnvParams, params: EnvParams
):
    action_motor = action[: static_env_params.num_motor_bindings]
    action_thruster = action[static_env_params.num_motor_bindings :]
    action_motor = index_motor_actions(action_motor, state, -1, 1)
    action_thruster = index_thruster_actions(action_thruster, state, 0, 1)

    action_motor = jnp.where(state.motor_auto, jnp.ones_like(action_motor), action_motor)

    action_to_perform = jnp.concatenate([action_motor, action_thruster], axis=0)
    return action_to_perform


def convert_discrete_actions(action: int, state: SimState, static_env_params: StaticEnvParams, params: EnvParams):
    # so, we have
    # 0 to NJC * 2 - 1: Joint Actions
    # NJC * 2: No-op
    # NJC * 2 + 1 to NJC * 2 + 1 + NTC - 1: Thruster Actions
    # action here is a categorical action
    which_idx = action // 2
    which_dir = action % 2
    actions = (
        jnp.zeros(static_env_params.num_motor_bindings + static_env_params.num_thruster_bindings)
        .at[which_idx]
        .set(which_dir * 2 - 1)
    )
    actions = actions * (
        1 - (action >= static_env_params.num_motor_bindings * 2)
    )  # if action is the last one, set it to zero, i.e., a no-op. Alternatively, if the action is larger than NJC * 2, then it is a thruster action and we shouldn't control the joints.

    actions = jax.lax.select(
        action > static_env_params.num_motor_bindings * 2,
        actions.at[action - static_env_params.num_motor_bindings * 2 - 1 + static_env_params.num_motor_bindings].set(1),
        actions,
    )

    action_motor = index_motor_actions(actions[: static_env_params.num_motor_bindings], state, -1, 1)
    action_motor = jnp.where(state.motor_auto, jnp.ones_like(action_motor), action_motor)
    action_thruster = index_thruster_actions(actions[static_env_params.num_motor_bindings :], state, 0, 1)
    action_to_perform = jnp.concatenate([action_motor, action_thruster], axis=0)
    return action_to_perform


def convert_multi_discrete_actions(
    action: jnp.ndarray, state: SimState, static_env_params: StaticEnvParams, params: EnvParams
):
    # Comes in with each action being in {0,1,2} for joints and {0,1} for thrusters
    # Convert to [-1., 1.] for joints and [0., 1.] for thrusters

    def _single_motor_action(act):
        return jax.lax.switch(
            act,
            [lambda: 0.0, lambda: 1.0, lambda: -1.0],
        )

    def _single_thruster_act(act):
        return jax.lax.select(
            act == 0,
            0.0,
            1.0,
        )

    action_motor = jax.vmap(_single_motor_action)(action[: static_env_params.num_motor_bindings])
    action_thruster = jax.vmap(_single_thruster_act)(action[static_env_params.num_motor_bindings :])

    action_motor = index_motor_actions(action_motor, state, -1, 1)
    action_thruster = index_thruster_actions(action_thruster, state, 0, 1)

    action_motor = jnp.where(state.motor_auto, jnp.ones_like(action_motor), action_motor)

    action_to_perform = jnp.concatenate([action_motor, action_thruster], axis=0)
    return action_to_perform


def make_kinetix_env_from_args(
    obs_type, action_type, reset_type, static_env_params=None, auto_reset_fn=None, dense_reward_scale=1.0
):
    if obs_type == "entity":
        if action_type == "multidiscrete":
            env = KinetixEntityMultiDiscreteActions(should_do_pcg_reset=True, static_env_params=static_env_params)
        elif action_type == "discrete":
            env = KinetixEntityDiscreteActions(should_do_pcg_reset=True, static_env_params=static_env_params)
        elif action_type == "continuous":
            env = KinetixEntityContinuousActions(should_do_pcg_reset=True, static_env_params=static_env_params)
        else:
            raise ValueError(f"Unknown action type: {action_type}")

    elif obs_type == "symbolic":
        if action_type == "multidiscrete":
            env = KinetixSymbolicMultiDiscreteActions(should_do_pcg_reset=True, static_env_params=static_env_params)
        elif action_type == "discrete":
            env = KinetixSymbolicDiscreteActions(should_do_pcg_reset=True, static_env_params=static_env_params)
        elif action_type == "continuous":
            env = KinetixSymbolicContinuousActions(should_do_pcg_reset=True, static_env_params=static_env_params)
        else:
            raise ValueError(f"Unknown action type: {action_type}")

    elif obs_type == "pixels":
        if action_type == "multidiscrete":
            env = KinetixPixelsMultiDiscreteActions(should_do_pcg_reset=True, static_env_params=static_env_params)
        elif action_type == "discrete":
            env = KinetixPixelsDiscreteActions(should_do_pcg_reset=True, static_env_params=static_env_params)
        elif action_type == "continuous":
            env = KinetixPixelsContinuousActions(should_do_pcg_reset=True, static_env_params=static_env_params)
        else:
            raise ValueError(f"Unknown action type: {action_type}")

    elif obs_type == "blind":
        if action_type == "discrete":
            env = KinetixBlindDiscreteActions(should_do_pcg_reset=True, static_env_params=static_env_params)
        elif action_type == "continuous":
            env = KinetixBlindContinuousActions(should_do_pcg_reset=True, static_env_params=static_env_params)
        else:
            raise ValueError(f"Unknown action type: {action_type}")

    else:
        raise ValueError(f"Unknown observation type: {obs_type}")

    # Wrap
    if reset_type == "replay":
        env = AutoReplayWrapper(env)
    elif reset_type == "reset":
        env = AutoResetWrapper(env, sample_level=auto_reset_fn)
    else:
        raise ValueError(f"Unknown reset type {reset_type}")

    env = UnderspecifiedToGymnaxWrapper(env)
    env = DenseRewardWrapper(env, dense_reward_scale=dense_reward_scale)
    env = LogWrapper(env)

    return env


def make_kinetix_env_from_name(name, static_env_params=None):
    kwargs = dict(filename_to_use_for_reset=None, should_do_pcg_reset=True, static_env_params=static_env_params)
    values = {
        "Kinetix-Pixels-MultiDiscrete-v1": KinetixPixelsMultiDiscreteActions,
        "Kinetix-Pixels-Discrete-v1": KinetixPixelsDiscreteActions,
        "Kinetix-Pixels-Continuous-v1": KinetixPixelsContinuousActions,
        "Kinetix-Symbolic-MultiDiscrete-v1": KinetixSymbolicMultiDiscreteActions,
        "Kinetix-Symbolic-Discrete-v1": KinetixSymbolicDiscreteActions,
        "Kinetix-Symbolic-Continuous-v1": KinetixSymbolicContinuousActions,
        "Kinetix-Blind-Discrete-v1": KinetixBlindDiscreteActions,
        "Kinetix-Blind-Continuous-v1": KinetixBlindContinuousActions,
        "Kinetix-Entity-Discrete-v1": KinetixEntityDiscreteActions,
        "Kinetix-Entity-Continuous-v1": KinetixEntityContinuousActions,
        "Kinetix-Entity-MultiDiscrete-v1": KinetixEntityMultiDiscreteActions,
    }

    return values[name](**kwargs)


class ObservationSpace:
    def __init__(self, params: EnvParams, static_env_params: StaticEnvParams):
        pass

    def get_obs(self, state: EnvState):
        raise NotImplementedError()

    def observation_space(self, params: EnvParams):
        raise NotImplementedError()


class PixelObservations(ObservationSpace):
    def __init__(self, params: EnvParams, static_env_params: StaticEnvParams):
        self.render_function = make_render_pixels_rl(params, static_env_params)
        self.static_env_params = static_env_params

    def get_obs(self, state: EnvState):
        return self.render_function(state)

    def observation_space(self, params: EnvParams) -> spaces.Box:
        return spaces.Box(
            0.0,
            1.0,
            tuple(a // self.static_env_params.downscale for a in self.static_env_params.screen_dim) + (3,),
            dtype=jnp.float32,
        )


class SymbolicObservations(ObservationSpace):
    def __init__(self, params: EnvParams, static_env_params: StaticEnvParams):
        self.render_function = make_render_symbolic(params, static_env_params)

    def get_obs(self, state: EnvState):
        return self.render_function(state)


class EntityObservations(ObservationSpace):
    def __init__(self, params: EnvParams, static_env_params: StaticEnvParams):
        self.render_function = make_render_entities(params, static_env_params)

    def get_obs(self, state: EnvState):
        return self.render_function(state)


class BlindObservations(ObservationSpace):
    def __init__(self, params: EnvParams, static_env_params: StaticEnvParams):
        self.params = params

    def get_obs(self, state: EnvState):
        return jax.nn.one_hot(state.timestep, self.params.max_timesteps + 1)


def get_observation_space_from_name(name: str, params, static_env_params):
    if "Pixels" in name:
        return PixelObservations(params, static_env_params)
    elif "Symbolic" in name:
        return SymbolicObservations(params, static_env_params)
    elif "Entity" in name:
        return EntityObservations(params, static_env_params)
    if "Blind" in name:
        return BlindObservations(params, static_env_params)
    else:
        raise ValueError(f"Unknown name {name}")


class ActionType:
    def __init__(self, params: EnvParams, static_env_params: StaticEnvParams):
        # This is the processed, unified action space size that is shared with all action types
        # 1 dim per motor and thruster
        self.unified_action_space_size = static_env_params.num_motor_bindings + static_env_params.num_thruster_bindings

    def action_space(self, params: Optional[EnvParams] = None) -> Union[spaces.Discrete, spaces.Box]:
        raise NotImplementedError()

    def process_action(self, action: jnp.ndarray, state: EnvState, static_env_params: StaticEnvParams) -> jnp.ndarray:
        raise NotImplementedError()

    def noop_action(self) -> jnp.ndarray:
        raise NotImplementedError()

    def random_action(self, rng: chex.PRNGKey):
        raise NotImplementedError()


class ActionTypeContinuous(ActionType):
    def __init__(self, params: EnvParams, static_env_params: StaticEnvParams):
        super().__init__(params, static_env_params)

        self.params = params
        self.static_env_params = static_env_params

    def action_space(self, params: EnvParams | None = None) -> spaces.Discrete | spaces.Box:
        return spaces.Box(
            low=jnp.ones(self.unified_action_space_size) * -1.0,
            high=jnp.ones(self.unified_action_space_size) * 1.0,
            shape=(self.unified_action_space_size,),
        )

    def process_action(self, action: PRNGKey, state: EnvState, static_env_params: StaticEnvParams) -> PRNGKey:
        return convert_continuous_actions(action, state, static_env_params, self.params)

    def noop_action(self) -> jnp.ndarray:
        return jnp.zeros(self.unified_action_space_size, dtype=jnp.float32)

    def random_action(self, rng: chex.PRNGKey) -> jnp.ndarray:
        actions = jax.random.uniform(rng, shape=(self.unified_action_space_size,), minval=-1.0, maxval=1.0)
        # Motors between -1 and 1, thrusters between 0 and 1
        actions = actions.at[self.static_env_params.num_motor_bindings :].set(
            jnp.abs(actions[self.static_env_params.num_motor_bindings :])
        )

        return actions


class ActionTypeDiscrete(ActionType):
    def __init__(self, params: EnvParams, static_env_params: StaticEnvParams):
        super().__init__(params, static_env_params)

        self.params = params
        self.static_env_params = static_env_params

        self._n_actions = (
            self.static_env_params.num_motor_bindings * 2 + 1 + self.static_env_params.num_thruster_bindings
        )

    def action_space(self, params: Optional[EnvParams] = None) -> spaces.Discrete:
        return spaces.Discrete(self._n_actions)

    def process_action(self, action: jnp.ndarray, state: EnvState, static_env_params: StaticEnvParams) -> jnp.ndarray:
        return convert_discrete_actions(action, state, static_env_params, self.params)

    def noop_action(self) -> int:
        return self.static_env_params.num_motor_bindings * 2

    def random_action(self, rng: chex.PRNGKey):
        return jax.random.randint(rng, shape=(), minval=0, maxval=self._n_actions)


class MultiDiscrete(Space):
    def __init__(self, n, number_of_dims_per_distribution):
        self.number_of_dims_per_distribution = number_of_dims_per_distribution
        self.n = n
        self.shape = (number_of_dims_per_distribution.shape[0],)
        self.dtype = jnp.int_

    def sample(self, rng: chex.PRNGKey) -> chex.Array:
        """Sample random action uniformly from set of categorical choices."""
        uniform_sample = jax.random.uniform(rng, shape=self.shape) * self.number_of_dims_per_distribution
        md_dist = jnp.floor(uniform_sample)
        return md_dist.astype(self.dtype)

    def contains(self, x) -> jnp.ndarray:
        """Check whether specific object is within space."""
        range_cond = jnp.logical_and(x >= 0, (x < self.number_of_dims_per_distribution).all())
        return range_cond


class ActionTypeMultiDiscrete(ActionType):
    def __init__(self, params: EnvParams, static_env_params: StaticEnvParams):
        super().__init__(params, static_env_params)

        self.params = params
        self.static_env_params = static_env_params
        # This is the action space that will be used internally by an agent
        # 3 dims per motor (foward, backward, off) and 2 per thruster (on, off)
        self.n_hot_action_space_size = (
            self.static_env_params.num_motor_bindings * 3 + self.static_env_params.num_thruster_bindings * 2
        )

        def _make_sample_random():
            minval = jnp.zeros(self.unified_action_space_size, dtype=jnp.int32)
            maxval = jnp.ones(self.unified_action_space_size, dtype=jnp.int32) * 3
            maxval = maxval.at[self.static_env_params.num_motor_bindings :].set(2)

            def random(rng):
                return jax.random.randint(rng, shape=(self.unified_action_space_size,), minval=minval, maxval=maxval)

            return random

        self._random = _make_sample_random

        self.number_of_dims_per_distribution = jnp.concatenate(
            [
                np.ones(self.static_env_params.num_motor_bindings) * 3,
                np.ones(self.static_env_params.num_thruster_bindings) * 2,
            ]
        ).astype(np.int32)

    def action_space(self, params: Optional[EnvParams] = None) -> MultiDiscrete:
        return MultiDiscrete(self.n_hot_action_space_size, self.number_of_dims_per_distribution)

    def process_action(self, action: jnp.ndarray, state: EnvState, static_env_params: StaticEnvParams) -> jnp.ndarray:
        return convert_multi_discrete_actions(action, state, static_env_params, self.params)

    def noop_action(self):
        return jnp.zeros(self.unified_action_space_size, dtype=jnp.int32)

    def random_action(self, rng: chex.PRNGKey):
        return self._random()(rng)


class BasePhysicsEnv(UnderspecifiedEnv):
    def __init__(
        self,
        action_type: ActionType,
        observation_space: ObservationSpace,
        static_env_params: StaticEnvParams,
        target_index: int = 0,
        filename_to_use_for_reset=None,  # "worlds/games/bipedal_v1",
        should_do_pcg_reset: bool = False,
    ):
        super().__init__()
        self.target_index = target_index
        self.static_env_params = static_env_params
        self.action_type = action_type
        self._observation_space = observation_space
        self.physics_engine = PhysicsEngine(self.static_env_params)
        self.should_do_pcg_reset = should_do_pcg_reset

        self.filename_to_use_for_reset = filename_to_use_for_reset
        if self.filename_to_use_for_reset is not None:
            self.reset_state = load_pcg_state_pickle(filename_to_use_for_reset)
        else:
            env_state = create_empty_env(self.static_env_params)
            self.reset_state = env_state_to_pcg_state(env_state)

    # Action / Observations
    def action_space(self, params: Optional[EnvParams] = None) -> Union[spaces.Discrete, spaces.Box]:
        return self.action_type.action_space(params)

    def observation_space(self, params: Any):
        return self._observation_space.observation_space(params)

    def get_obs(self, state: EnvState):
        return self._observation_space.get_obs(state)

    def step_env(self, rng, state, action: jnp.ndarray, params):
        action_processed = self.action_type.process_action(action, state, self.static_env_params)
        return self.engine_step(state, action_processed, params)

    def reset_env(self, rng, params):
        # Wrap in AutoResetWrapper or AutoReplayWrapper
        raise NotImplementedError()

    def reset_env_to_level(self, rng, state: EnvState, params):
        if isinstance(state, PCGState):
            return self.reset_env_to_pcg_level(rng, state, params)
        return self.get_obs(state), state

    def reset_env_to_pcg_level(self, rng, state: PCGState, params):
        env_state = sample_pcg_state(rng, state, params, self.static_env_params)
        return self.get_obs(env_state), env_state

    @property
    def default_params(self) -> EnvParams:
        return EnvParams()

    @staticmethod
    def default_static_params() -> StaticEnvParams:
        return StaticEnvParams()

    def compute_reward_info(
        self, state: EnvState, manifolds: tuple[CollisionManifold, CollisionManifold, CollisionManifold]
    ) -> float:
        def get_active(manifold: CollisionManifold) -> jnp.ndarray:
            return manifold.active

        def dist(a, b):
            return jnp.linalg.norm(a - b)

        @jax.vmap
        def dist_rr(idxa, idxb):
            return dist(state.polygon.position[idxa], state.polygon.position[idxb])

        @jax.vmap
        def dist_cc(idxa, idxb):
            return dist(state.circle.position[idxa], state.circle.position[idxb])

        @jax.vmap
        def dist_cr(idxa, idxb):
            return dist(state.circle.position[idxa], state.polygon.position[idxb])

        info = {
            "GoalR": False,
        }
        negative_reward = 0
        reward = 0
        distance = 0
        rs = state.polygon_shape_roles * state.polygon.active
        cs = state.circle_shape_roles * state.circle.active

        # Polygon Polygon
        r1 = rs[self.physics_engine.poly_poly_pairs[:, 0]]
        r2 = rs[self.physics_engine.poly_poly_pairs[:, 1]]
        reward += ((r1 * r2 == 2) * get_active(manifolds[0])).sum()
        negative_reward += ((r1 * r2 == 3) * get_active(manifolds[0])).sum()

        distance += (
            (r1 * r2 == 2)
            * dist_rr(self.physics_engine.poly_poly_pairs[:, 0], self.physics_engine.poly_poly_pairs[:, 1])
        ).sum()

        # Circle Polygon
        c1 = cs[self.physics_engine.circle_poly_pairs[:, 0]]
        r2 = rs[self.physics_engine.circle_poly_pairs[:, 1]]
        reward += ((c1 * r2 == 2) * get_active(manifolds[1])).sum()
        negative_reward += ((c1 * r2 == 3) * get_active(manifolds[1])).sum()

        t = dist_cr(self.physics_engine.circle_poly_pairs[:, 0], self.physics_engine.circle_poly_pairs[:, 1])
        distance += ((c1 * r2 == 2) * t).sum()

        # Circle Circle
        c1 = cs[self.physics_engine.circle_circle_pairs[:, 0]]
        c2 = cs[self.physics_engine.circle_circle_pairs[:, 1]]
        reward += ((c1 * c2 == 2) * get_active(manifolds[2])).sum()
        negative_reward += ((c1 * c2 == 3) * get_active(manifolds[2])).sum()

        distance += (
            (c1 * c2 == 2)
            * dist_cc(self.physics_engine.circle_circle_pairs[:, 0], self.physics_engine.circle_circle_pairs[:, 1])
        ).sum()

        reward = jax.lax.select(
            negative_reward > 0,
            -1.0,
            jax.lax.select(
                reward > 0,
                1.0,
                0.0,
            ),
        )

        info["GoalR"] = reward > 0
        info["distance"] = distance
        return reward, info

    @partial(jax.jit, static_argnums=(0,))
    def engine_step(self, env_state, action_to_perform, env_params):
        def _single_step(env_state, unused):
            env_state, mfolds = self.physics_engine.step(
                env_state,
                env_params,
                action_to_perform,
            )

            reward, info = self.compute_reward_info(env_state, mfolds)

            done = reward != 0

            info = {"rr_manifolds": None, "cr_manifolds": None} | info

            return env_state, (reward, done, info)

        env_state, (rewards, dones, infos) = jax.lax.scan(
            _single_step, env_state, xs=None, length=self.static_env_params.frame_skip
        )
        env_state = env_state.replace(timestep=env_state.timestep + 1)

        reward = rewards.max()
        done = dones.sum() > 0 | jax.tree.reduce(
            jnp.logical_or, jax.tree.map(lambda x: jnp.isnan(x).any(), env_state), False
        )
        done |= env_state.timestep >= env_params.max_timesteps

        info = jax.tree.map(lambda x: x[-1], infos)

        return (
            lax.stop_gradient(self.get_obs(env_state)),
            lax.stop_gradient(env_state),
            reward,
            done,
            info,
        )

    @functools.partial(jax.jit, static_argnums=(0,))
    def step(
        self,
        key: chex.PRNGKey,
        state: TEnvState,
        action: Union[int, float, chex.Array],
        params: Optional[TEnvParams] = None,
    ) -> Tuple[chex.Array, TEnvState, jnp.ndarray, jnp.ndarray, Dict[Any, Any]]:
        raise NotImplementedError()


class KinetixPixelsDiscreteActions(BasePhysicsEnv):
    def __init__(
        self,
        static_env_params: StaticEnvParams | None = None,
        **kwargs,
    ):

        params = self.default_params
        static_env_params = static_env_params or self.default_static_params()
        super().__init__(
            action_type=ActionTypeDiscrete(params, static_env_params),
            observation_space=PixelObservations(params, static_env_params),
            static_env_params=static_env_params,
            **kwargs,
        )

    @property
    def name(self) -> str:
        return "Kinetix-Pixels-Discrete-v1"


class KinetixPixelsContinuousActions(BasePhysicsEnv):
    def __init__(
        self,
        static_env_params: StaticEnvParams | None = None,
        **kwargs,
    ):
        params = self.default_params
        static_env_params = static_env_params or self.default_static_params()
        super().__init__(
            action_type=ActionTypeContinuous(params, static_env_params),
            observation_space=PixelObservations(params, static_env_params),
            static_env_params=static_env_params,
            **kwargs,
        )

    @property
    def name(self) -> str:
        return "Kinetix-Pixels-Continuous-v1"


class KinetixPixelsMultiDiscreteActions(BasePhysicsEnv):
    def __init__(
        self,
        static_env_params: StaticEnvParams | None = None,
        **kwargs,
    ):
        params = self.default_params
        static_env_params = static_env_params or self.default_static_params()
        super().__init__(
            action_type=ActionTypeMultiDiscrete(params, static_env_params),
            observation_space=PixelObservations(params, static_env_params),
            static_env_params=static_env_params,
            **kwargs,
        )

    @property
    def name(self) -> str:
        return "Kinetix-Pixels-MultiDiscrete-v1"


class KinetixSymbolicDiscreteActions(BasePhysicsEnv):
    def __init__(
        self,
        static_env_params: StaticEnvParams | None = None,
        **kwargs,
    ):
        params = self.default_params
        static_env_params = static_env_params or self.default_static_params()
        super().__init__(
            action_type=ActionTypeDiscrete(params, static_env_params),
            observation_space=SymbolicObservations(params, static_env_params),
            static_env_params=static_env_params,
            **kwargs,
        )

    @property
    def name(self) -> str:
        return "Kinetix-Symbolic-Discrete-v1"


class KinetixSymbolicContinuousActions(BasePhysicsEnv):
    def __init__(
        self,
        static_env_params: StaticEnvParams | None = None,
        **kwargs,
    ):
        params = self.default_params
        static_env_params = static_env_params or self.default_static_params()
        super().__init__(
            action_type=ActionTypeContinuous(params, static_env_params),
            observation_space=SymbolicObservations(params, static_env_params),
            static_env_params=static_env_params,
            **kwargs,
        )

    @property
    def name(self) -> str:
        return "Kinetix-Symbolic-Continuous-v1"


class KinetixSymbolicMultiDiscreteActions(BasePhysicsEnv):
    def __init__(
        self,
        static_env_params: StaticEnvParams | None = None,
        **kwargs,
    ):
        params = self.default_params
        static_env_params = static_env_params or self.default_static_params()
        super().__init__(
            action_type=ActionTypeMultiDiscrete(params, static_env_params),
            observation_space=SymbolicObservations(params, static_env_params),
            static_env_params=static_env_params,
            **kwargs,
        )

    @property
    def name(self) -> str:
        return "Kinetix-Symbolic-MultiDiscrete-v1"


class KinetixEntityDiscreteActions(BasePhysicsEnv):
    def __init__(
        self,
        static_env_params: StaticEnvParams | None = None,
        **kwargs,
    ):
        params = self.default_params
        static_env_params = static_env_params or self.default_static_params()
        super().__init__(
            action_type=ActionTypeDiscrete(params, static_env_params),
            observation_space=EntityObservations(params, static_env_params),
            static_env_params=static_env_params,
            **kwargs,
        )

    @property
    def name(self) -> str:
        return "Kinetix-Entity-Discrete-v1"


class KinetixEntityContinuousActions(BasePhysicsEnv):
    def __init__(
        self,
        static_env_params: StaticEnvParams | None = None,
        **kwargs,
    ):
        params = self.default_params
        static_env_params = static_env_params or self.default_static_params()
        super().__init__(
            action_type=ActionTypeContinuous(params, static_env_params),
            observation_space=EntityObservations(params, static_env_params),
            static_env_params=static_env_params,
            **kwargs,
        )

    @property
    def name(self) -> str:
        return "Kinetix-Entity-Continuous-v1"


class KinetixEntityMultiDiscreteActions(BasePhysicsEnv):
    def __init__(
        self,
        static_env_params: StaticEnvParams | None = None,
        **kwargs,
    ):
        params = self.default_params
        static_env_params = static_env_params or self.default_static_params()
        super().__init__(
            action_type=ActionTypeMultiDiscrete(params, static_env_params),
            observation_space=EntityObservations(params, static_env_params),
            static_env_params=static_env_params,
            **kwargs,
        )

    @property
    def name(self) -> str:
        return "Kinetix-Entity-MultiDiscrete-v1"


class KinetixBlindDiscreteActions(BasePhysicsEnv):
    def __init__(
        self,
        static_env_params: StaticEnvParams | None = None,
        **kwargs,
    ):
        params = self.default_params
        static_env_params = static_env_params or self.default_static_params()
        super().__init__(
            action_type=ActionTypeDiscrete(params, static_env_params),
            observation_space=BlindObservations(params, static_env_params),
            static_env_params=static_env_params,
            **kwargs,
        )

    @property
    def name(self) -> str:
        return "Kinetix-Blind-Discrete-v1"


class KinetixBlindContinuousActions(BasePhysicsEnv):
    def __init__(
        self,
        static_env_params: StaticEnvParams | None = None,
        **kwargs,
    ):
        params = self.default_params
        static_env_params = static_env_params or self.default_static_params()
        super().__init__(
            action_type=ActionTypeContinuous(params, static_env_params),
            observation_space=BlindObservations(params, static_env_params),
            static_env_params=static_env_params,
            **kwargs,
        )

    @property
    def name(self) -> str:
        return "Kinetix-Blind-Continuous-v1"