Spaces:
Runtime error
Runtime error
File size: 19,173 Bytes
e0f25ed |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 |
import os
import hydra
from omegaconf import OmegaConf
from kinetix.environment.ued.ued import (
make_reset_train_function_with_list_of_levels,
make_reset_train_function_with_mutations,
)
from kinetix.render.renderer_pixels import make_render_pixels
from kinetix.util.config import (
get_video_frequency,
init_wandb,
normalise_config,
generate_params_from_config,
)
os.environ["WANDB_DISABLE_SERVICE"] = "True"
import sys
from typing import Any, NamedTuple
import jax
import jax.numpy as jnp
import numpy as np
import optax
from flax.training.train_state import TrainState
from kinetix.models import make_network_from_config
from kinetix.util.learning import general_eval, get_eval_levels
from flax.serialization import to_state_dict
import wandb
from kinetix.environment.env import PixelObservations, make_kinetix_env_from_name
from kinetix.environment.wrappers import (
AutoReplayWrapper,
AutoResetWrapper,
BatchEnvWrapper,
DenseRewardWrapper,
LogWrapper,
UnderspecifiedToGymnaxWrapper,
)
from kinetix.models.actor_critic import ScannedRNN
from kinetix.util.saving import (
load_train_state_from_wandb_artifact_path,
save_model_to_wandb,
)
class Transition(NamedTuple):
done: jnp.ndarray
action: jnp.ndarray
value: jnp.ndarray
reward: jnp.ndarray
log_prob: jnp.ndarray
obs: Any
info: jnp.ndarray
def make_train(config, env_params, static_env_params):
config["num_updates"] = config["total_timesteps"] // config["num_steps"] // config["num_train_envs"]
config["minibatch_size"] = config["num_train_envs"] * config["num_steps"] // config["num_minibatches"]
env = make_kinetix_env_from_name(config["env_name"], static_env_params=static_env_params)
if config["train_level_mode"] == "list":
reset_func = make_reset_train_function_with_list_of_levels(
config, config["train_levels_list"], static_env_params, is_loading_train_levels=True
)
elif config["train_level_mode"] == "random":
reset_func = make_reset_train_function_with_mutations(
env.physics_engine, env_params, env.static_env_params, config
)
else:
raise ValueError(f"Unknown train_level_mode: {config['train_level_mode']}")
env = UnderspecifiedToGymnaxWrapper(AutoResetWrapper(env, reset_func))
eval_env = make_kinetix_env_from_name(config["env_name"], static_env_params=static_env_params)
eval_env = UnderspecifiedToGymnaxWrapper(AutoReplayWrapper(eval_env))
env = DenseRewardWrapper(env)
env = LogWrapper(env)
env = BatchEnvWrapper(env, num_envs=config["num_train_envs"])
eval_env_nonbatch = LogWrapper(DenseRewardWrapper(eval_env))
def linear_schedule(count):
frac = 1.0 - (count // (config["num_minibatches"] * config["update_epochs"])) / config["num_updates"]
return config["lr"] * frac
def linear_warmup_cosine_decay_schedule(count):
frac = (count // (config["num_minibatches"] * config["update_epochs"])) / config[
"num_updates"
] # between 0 and 1
delta = config["peak_lr"] - config["initial_lr"]
frac_diff_max = 1.0 - config["warmup_frac"]
frac_cosine = (frac - config["warmup_frac"]) / frac_diff_max
return jax.lax.select(
frac < config["warmup_frac"],
config["initial_lr"] + delta * frac / config["warmup_frac"],
config["peak_lr"] * jnp.maximum(0.0, 0.5 * (1.0 + jnp.cos(jnp.pi * ((frac_cosine) % 1.0)))),
)
def train(rng):
# INIT NETWORK
network = make_network_from_config(env, env_params, config)
rng, _rng = jax.random.split(rng)
obsv, env_state = env.reset(_rng, env_params)
dones = jnp.zeros((config["num_train_envs"]), dtype=jnp.bool_)
rng, _rng = jax.random.split(rng)
init_hstate = ScannedRNN.initialize_carry(config["num_train_envs"])
init_x = jax.tree.map(lambda x: x[None, ...], (obsv, dones))
network_params = network.init(_rng, init_hstate, init_x)
param_count = sum(x.size for x in jax.tree_util.tree_leaves(network_params))
obs_size = sum(x.size for x in jax.tree_util.tree_leaves(obsv)) // config["num_train_envs"]
print("Number of parameters", param_count, "size of obs: ", obs_size)
if config["anneal_lr"]:
tx = optax.chain(
optax.clip_by_global_norm(config["max_grad_norm"]),
optax.adam(learning_rate=linear_schedule, eps=1e-5),
)
elif config["warmup_lr"]:
tx = optax.chain(
optax.clip_by_global_norm(config["max_grad_norm"]),
optax.adamw(learning_rate=linear_warmup_cosine_decay_schedule, eps=1e-5),
)
else:
tx = optax.chain(
optax.clip_by_global_norm(config["max_grad_norm"]),
optax.adam(config["lr"], eps=1e-5),
)
train_state = TrainState.create(
apply_fn=network.apply,
params=network_params,
tx=tx,
)
if config["load_from_checkpoint"] != None:
print("LOADING from", config["load_from_checkpoint"], "with only params =", config["load_only_params"])
train_state = load_train_state_from_wandb_artifact_path(
train_state, config["load_from_checkpoint"], load_only_params=config["load_only_params"]
)
# INIT ENV
rng, _rng = jax.random.split(rng)
obsv, env_state = env.reset(_rng, env_params)
init_hstate = ScannedRNN.initialize_carry(config["num_train_envs"])
render_static_env_params = env.static_env_params.replace(downscale=1)
pixel_renderer = jax.jit(make_render_pixels(env_params, render_static_env_params))
pixel_render_fn = lambda x: pixel_renderer(x) / 255.0
eval_levels = get_eval_levels(config["eval_levels"], env.static_env_params)
def _vmapped_eval_step(runner_state, rng):
def _single_eval_step(rng):
return general_eval(
rng,
eval_env_nonbatch,
env_params,
runner_state[0],
eval_levels,
env_params.max_timesteps,
config["num_eval_levels"],
keep_states=True,
return_trajectories=True,
)
(states, returns, done_idxs, episode_lengths, eval_infos), (eval_dones, eval_rewards) = jax.vmap(
_single_eval_step
)(jax.random.split(rng, config["eval_num_attempts"]))
eval_solves = (eval_infos["returned_episode_solved"] * eval_dones).sum(axis=1) / jnp.maximum(
1, eval_dones.sum(axis=1)
)
states_to_plot = jax.tree.map(lambda x: x[0], states)
# obs = jax.vmap(jax.vmap(pixel_render_fn))(states_to_plot.env_state.env_state.env_state)
return (
states_to_plot,
done_idxs[0],
returns[0],
returns.mean(axis=0),
episode_lengths.mean(axis=0),
eval_solves.mean(axis=0),
)
# TRAIN LOOP
def _update_step(runner_state, unused):
# COLLECT TRAJECTORIES
def _env_step(runner_state, unused):
(
train_state,
env_state,
last_obs,
last_done,
hstate,
rng,
update_step,
) = runner_state
# SELECT ACTION
rng, _rng = jax.random.split(rng)
ac_in = (jax.tree.map(lambda x: x[np.newaxis, :], last_obs), last_done[np.newaxis, :])
hstate, pi, value = network.apply(train_state.params, hstate, ac_in)
action = pi.sample(seed=_rng)
log_prob = pi.log_prob(action)
value, action, log_prob = (
value.squeeze(0),
action.squeeze(0),
log_prob.squeeze(0),
)
# STEP ENV
rng, _rng = jax.random.split(rng)
obsv, env_state, reward, done, info = env.step(_rng, env_state, action, env_params)
transition = Transition(last_done, action, value, reward, log_prob, last_obs, info)
runner_state = (
train_state,
env_state,
obsv,
done,
hstate,
rng,
update_step,
)
return runner_state, transition
initial_hstate = runner_state[-3]
runner_state, traj_batch = jax.lax.scan(_env_step, runner_state, None, config["num_steps"])
# CALCULATE ADVANTAGE
(
train_state,
env_state,
last_obs,
last_done,
hstate,
rng,
update_step,
) = runner_state
ac_in = (jax.tree.map(lambda x: x[np.newaxis, :], last_obs), last_done[np.newaxis, :])
_, _, last_val = network.apply(train_state.params, hstate, ac_in)
last_val = last_val.squeeze(0)
def _calculate_gae(traj_batch, last_val, last_done):
def _get_advantages(carry, transition):
gae, next_value, next_done = carry
done, value, reward = (
transition.done,
transition.value,
transition.reward,
)
delta = reward + config["gamma"] * next_value * (1 - next_done) - value
gae = delta + config["gamma"] * config["gae_lambda"] * (1 - next_done) * gae
return (gae, value, done), gae
_, advantages = jax.lax.scan(
_get_advantages,
(jnp.zeros_like(last_val), last_val, last_done),
traj_batch,
reverse=True,
unroll=16,
)
return advantages, advantages + traj_batch.value
advantages, targets = _calculate_gae(traj_batch, last_val, last_done)
# UPDATE NETWORK
def _update_epoch(update_state, unused):
def _update_minbatch(train_state, batch_info):
init_hstate, traj_batch, advantages, targets = batch_info
def _loss_fn(params, init_hstate, traj_batch, gae, targets):
# RERUN NETWORK
_, pi, value = network.apply(params, init_hstate[0], (traj_batch.obs, traj_batch.done))
log_prob = pi.log_prob(traj_batch.action)
# CALCULATE VALUE LOSS
value_pred_clipped = traj_batch.value + (value - traj_batch.value).clip(
-config["clip_eps"], config["clip_eps"]
)
value_losses = jnp.square(value - targets)
value_losses_clipped = jnp.square(value_pred_clipped - targets)
value_loss = 0.5 * jnp.maximum(value_losses, value_losses_clipped).mean()
# CALCULATE ACTOR LOSS
ratio = jnp.exp(log_prob - traj_batch.log_prob)
gae = (gae - gae.mean()) / (gae.std() + 1e-8)
loss_actor1 = ratio * gae
loss_actor2 = (
jnp.clip(
ratio,
1.0 - config["clip_eps"],
1.0 + config["clip_eps"],
)
* gae
)
loss_actor = -jnp.minimum(loss_actor1, loss_actor2)
loss_actor = loss_actor.mean()
entropy = pi.entropy().mean()
total_loss = loss_actor + config["vf_coef"] * value_loss - config["ent_coef"] * entropy
return total_loss, (value_loss, loss_actor, entropy)
grad_fn = jax.value_and_grad(_loss_fn, has_aux=True)
total_loss, grads = grad_fn(train_state.params, init_hstate, traj_batch, advantages, targets)
train_state = train_state.apply_gradients(grads=grads)
return train_state, total_loss
(
train_state,
init_hstate,
traj_batch,
advantages,
targets,
rng,
) = update_state
rng, _rng = jax.random.split(rng)
permutation = jax.random.permutation(_rng, config["num_train_envs"])
batch = (init_hstate, traj_batch, advantages, targets)
shuffled_batch = jax.tree_util.tree_map(lambda x: jnp.take(x, permutation, axis=1), batch)
minibatches = jax.tree_util.tree_map(
lambda x: jnp.swapaxes(
jnp.reshape(
x,
[x.shape[0], config["num_minibatches"], -1] + list(x.shape[2:]),
),
1,
0,
),
shuffled_batch,
)
train_state, total_loss = jax.lax.scan(_update_minbatch, train_state, minibatches)
update_state = (
train_state,
init_hstate,
traj_batch,
advantages,
targets,
rng,
)
return update_state, total_loss
init_hstate = initial_hstate[None, :] # TBH
update_state = (
train_state,
init_hstate,
traj_batch,
advantages,
targets,
rng,
)
update_state, loss_info = jax.lax.scan(_update_epoch, update_state, None, config["update_epochs"])
train_state = update_state[0]
metric = jax.tree.map(
lambda x: (x * traj_batch.info["returned_episode"]).sum() / traj_batch.info["returned_episode"].sum(),
traj_batch.info,
)
rng = update_state[-1]
if config["use_wandb"]:
vid_frequency = get_video_frequency(config, update_step)
rng, _rng = jax.random.split(rng)
to_log_videos = _vmapped_eval_step(runner_state, _rng)
should_log_videos = update_step % vid_frequency == 0
first = jax.lax.cond(
should_log_videos,
lambda: jax.vmap(jax.vmap(pixel_render_fn))(to_log_videos[0].env_state.env_state.env_state),
lambda: (
jnp.zeros(
(
env_params.max_timesteps,
config["num_eval_levels"],
*PixelObservations(env_params, render_static_env_params)
.observation_space(env_params)
.shape,
)
)
),
)
to_log_videos = (first, should_log_videos, *to_log_videos[1:])
def callback(metric, raw_info, loss_info, update_step, to_log_videos):
to_log = {}
to_log["timing/num_updates"] = update_step
to_log["timing/num_env_steps"] = update_step * config["num_steps"] * config["num_train_envs"]
(
obs_vid,
should_log_videos,
idx_vid,
eval_return_vid,
eval_return_mean,
eval_eplen_mean,
eval_solverate_mean,
) = to_log_videos
to_log["eval/mean_eval_return"] = eval_return_mean.mean()
to_log["eval/mean_eval_eplen"] = eval_eplen_mean.mean()
for i, eval_name in enumerate(config["eval_levels"]):
return_on_video = eval_return_vid[i]
to_log[f"eval_video/return_{eval_name}"] = return_on_video
to_log[f"eval_video/len_{eval_name}"] = idx_vid[i]
to_log[f"eval_avg/return_{eval_name}"] = eval_return_mean[i]
to_log[f"eval_avg/solve_rate_{eval_name}"] = eval_solverate_mean[i]
if should_log_videos:
for i, eval_name in enumerate(config["eval_levels"]):
obs_to_use = obs_vid[: idx_vid[i], i]
obs_to_use = np.asarray(obs_to_use).transpose(0, 3, 2, 1)[:, :, ::-1, :]
to_log[f"media/eval_video_{eval_name}"] = wandb.Video((obs_to_use * 255).astype(np.uint8))
wandb.log(to_log)
jax.debug.callback(callback, metric, traj_batch.info, loss_info, update_step, to_log_videos)
runner_state = (
train_state,
env_state,
last_obs,
last_done,
hstate,
rng,
update_step + 1,
)
return runner_state, metric
rng, _rng = jax.random.split(rng)
runner_state = (
train_state,
env_state,
obsv,
jnp.zeros((config["num_train_envs"]), dtype=bool),
init_hstate,
_rng,
0,
)
runner_state, metric = jax.lax.scan(_update_step, runner_state, None, config["num_updates"])
return {"runner_state": runner_state, "metric": metric}
return train
@hydra.main(version_base=None, config_path="../configs", config_name="ppo")
def main(config):
config = normalise_config(OmegaConf.to_container(config), "PPO")
env_params, static_env_params = generate_params_from_config(config)
config["env_params"] = to_state_dict(env_params)
config["static_env_params"] = to_state_dict(static_env_params)
if config["use_wandb"]:
run = init_wandb(config, "PPO")
rng = jax.random.PRNGKey(config["seed"])
rng, _rng = jax.random.split(rng)
train_jit = jax.jit(make_train(config, env_params, static_env_params))
out = train_jit(_rng)
if config["use_wandb"]:
if config["save_policy"]:
train_state = jax.tree.map(lambda x: x, out["runner_state"][0])
save_model_to_wandb(train_state, config["total_timesteps"], config)
if __name__ == "__main__":
main()
|