File size: 19,173 Bytes
e0f25ed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
import os
import hydra
from omegaconf import OmegaConf

from kinetix.environment.ued.ued import (
    make_reset_train_function_with_list_of_levels,
    make_reset_train_function_with_mutations,
)
from kinetix.render.renderer_pixels import make_render_pixels
from kinetix.util.config import (
    get_video_frequency,
    init_wandb,
    normalise_config,
    generate_params_from_config,
)

os.environ["WANDB_DISABLE_SERVICE"] = "True"


import sys
from typing import Any, NamedTuple

import jax
import jax.numpy as jnp
import numpy as np
import optax
from flax.training.train_state import TrainState

from kinetix.models import make_network_from_config
from kinetix.util.learning import general_eval, get_eval_levels
from flax.serialization import to_state_dict

import wandb
from kinetix.environment.env import PixelObservations, make_kinetix_env_from_name
from kinetix.environment.wrappers import (
    AutoReplayWrapper,
    AutoResetWrapper,
    BatchEnvWrapper,
    DenseRewardWrapper,
    LogWrapper,
    UnderspecifiedToGymnaxWrapper,
)
from kinetix.models.actor_critic import ScannedRNN
from kinetix.util.saving import (
    load_train_state_from_wandb_artifact_path,
    save_model_to_wandb,
)


class Transition(NamedTuple):
    done: jnp.ndarray
    action: jnp.ndarray
    value: jnp.ndarray
    reward: jnp.ndarray
    log_prob: jnp.ndarray
    obs: Any
    info: jnp.ndarray


def make_train(config, env_params, static_env_params):
    config["num_updates"] = config["total_timesteps"] // config["num_steps"] // config["num_train_envs"]
    config["minibatch_size"] = config["num_train_envs"] * config["num_steps"] // config["num_minibatches"]

    env = make_kinetix_env_from_name(config["env_name"], static_env_params=static_env_params)

    if config["train_level_mode"] == "list":
        reset_func = make_reset_train_function_with_list_of_levels(
            config, config["train_levels_list"], static_env_params, is_loading_train_levels=True
        )
    elif config["train_level_mode"] == "random":
        reset_func = make_reset_train_function_with_mutations(
            env.physics_engine, env_params, env.static_env_params, config
        )
    else:
        raise ValueError(f"Unknown train_level_mode: {config['train_level_mode']}")

    env = UnderspecifiedToGymnaxWrapper(AutoResetWrapper(env, reset_func))

    eval_env = make_kinetix_env_from_name(config["env_name"], static_env_params=static_env_params)
    eval_env = UnderspecifiedToGymnaxWrapper(AutoReplayWrapper(eval_env))

    env = DenseRewardWrapper(env)
    env = LogWrapper(env)
    env = BatchEnvWrapper(env, num_envs=config["num_train_envs"])

    eval_env_nonbatch = LogWrapper(DenseRewardWrapper(eval_env))

    def linear_schedule(count):
        frac = 1.0 - (count // (config["num_minibatches"] * config["update_epochs"])) / config["num_updates"]
        return config["lr"] * frac

    def linear_warmup_cosine_decay_schedule(count):
        frac = (count // (config["num_minibatches"] * config["update_epochs"])) / config[
            "num_updates"
        ]  # between 0 and 1
        delta = config["peak_lr"] - config["initial_lr"]
        frac_diff_max = 1.0 - config["warmup_frac"]
        frac_cosine = (frac - config["warmup_frac"]) / frac_diff_max

        return jax.lax.select(
            frac < config["warmup_frac"],
            config["initial_lr"] + delta * frac / config["warmup_frac"],
            config["peak_lr"] * jnp.maximum(0.0, 0.5 * (1.0 + jnp.cos(jnp.pi * ((frac_cosine) % 1.0)))),
        )

    def train(rng):
        # INIT NETWORK
        network = make_network_from_config(env, env_params, config)
        rng, _rng = jax.random.split(rng)
        obsv, env_state = env.reset(_rng, env_params)
        dones = jnp.zeros((config["num_train_envs"]), dtype=jnp.bool_)
        rng, _rng = jax.random.split(rng)
        init_hstate = ScannedRNN.initialize_carry(config["num_train_envs"])
        init_x = jax.tree.map(lambda x: x[None, ...], (obsv, dones))
        network_params = network.init(_rng, init_hstate, init_x)

        param_count = sum(x.size for x in jax.tree_util.tree_leaves(network_params))
        obs_size = sum(x.size for x in jax.tree_util.tree_leaves(obsv)) // config["num_train_envs"]

        print("Number of parameters", param_count, "size of obs: ", obs_size)
        if config["anneal_lr"]:
            tx = optax.chain(
                optax.clip_by_global_norm(config["max_grad_norm"]),
                optax.adam(learning_rate=linear_schedule, eps=1e-5),
            )
        elif config["warmup_lr"]:
            tx = optax.chain(
                optax.clip_by_global_norm(config["max_grad_norm"]),
                optax.adamw(learning_rate=linear_warmup_cosine_decay_schedule, eps=1e-5),
            )
        else:
            tx = optax.chain(
                optax.clip_by_global_norm(config["max_grad_norm"]),
                optax.adam(config["lr"], eps=1e-5),
            )
        train_state = TrainState.create(
            apply_fn=network.apply,
            params=network_params,
            tx=tx,
        )
        if config["load_from_checkpoint"] != None:
            print("LOADING from", config["load_from_checkpoint"], "with only params =", config["load_only_params"])
            train_state = load_train_state_from_wandb_artifact_path(
                train_state, config["load_from_checkpoint"], load_only_params=config["load_only_params"]
            )
        # INIT ENV
        rng, _rng = jax.random.split(rng)
        obsv, env_state = env.reset(_rng, env_params)
        init_hstate = ScannedRNN.initialize_carry(config["num_train_envs"])
        render_static_env_params = env.static_env_params.replace(downscale=1)
        pixel_renderer = jax.jit(make_render_pixels(env_params, render_static_env_params))
        pixel_render_fn = lambda x: pixel_renderer(x) / 255.0
        eval_levels = get_eval_levels(config["eval_levels"], env.static_env_params)

        def _vmapped_eval_step(runner_state, rng):
            def _single_eval_step(rng):
                return general_eval(
                    rng,
                    eval_env_nonbatch,
                    env_params,
                    runner_state[0],
                    eval_levels,
                    env_params.max_timesteps,
                    config["num_eval_levels"],
                    keep_states=True,
                    return_trajectories=True,
                )

            (states, returns, done_idxs, episode_lengths, eval_infos), (eval_dones, eval_rewards) = jax.vmap(
                _single_eval_step
            )(jax.random.split(rng, config["eval_num_attempts"]))
            eval_solves = (eval_infos["returned_episode_solved"] * eval_dones).sum(axis=1) / jnp.maximum(
                1, eval_dones.sum(axis=1)
            )
            states_to_plot = jax.tree.map(lambda x: x[0], states)
            # obs = jax.vmap(jax.vmap(pixel_render_fn))(states_to_plot.env_state.env_state.env_state)

            return (
                states_to_plot,
                done_idxs[0],
                returns[0],
                returns.mean(axis=0),
                episode_lengths.mean(axis=0),
                eval_solves.mean(axis=0),
            )

        # TRAIN LOOP
        def _update_step(runner_state, unused):
            # COLLECT TRAJECTORIES
            def _env_step(runner_state, unused):
                (
                    train_state,
                    env_state,
                    last_obs,
                    last_done,
                    hstate,
                    rng,
                    update_step,
                ) = runner_state

                # SELECT ACTION
                rng, _rng = jax.random.split(rng)
                ac_in = (jax.tree.map(lambda x: x[np.newaxis, :], last_obs), last_done[np.newaxis, :])
                hstate, pi, value = network.apply(train_state.params, hstate, ac_in)
                action = pi.sample(seed=_rng)
                log_prob = pi.log_prob(action)
                value, action, log_prob = (
                    value.squeeze(0),
                    action.squeeze(0),
                    log_prob.squeeze(0),
                )

                # STEP ENV
                rng, _rng = jax.random.split(rng)
                obsv, env_state, reward, done, info = env.step(_rng, env_state, action, env_params)
                transition = Transition(last_done, action, value, reward, log_prob, last_obs, info)
                runner_state = (
                    train_state,
                    env_state,
                    obsv,
                    done,
                    hstate,
                    rng,
                    update_step,
                )
                return runner_state, transition

            initial_hstate = runner_state[-3]
            runner_state, traj_batch = jax.lax.scan(_env_step, runner_state, None, config["num_steps"])

            # CALCULATE ADVANTAGE
            (
                train_state,
                env_state,
                last_obs,
                last_done,
                hstate,
                rng,
                update_step,
            ) = runner_state
            ac_in = (jax.tree.map(lambda x: x[np.newaxis, :], last_obs), last_done[np.newaxis, :])
            _, _, last_val = network.apply(train_state.params, hstate, ac_in)
            last_val = last_val.squeeze(0)

            def _calculate_gae(traj_batch, last_val, last_done):
                def _get_advantages(carry, transition):
                    gae, next_value, next_done = carry
                    done, value, reward = (
                        transition.done,
                        transition.value,
                        transition.reward,
                    )
                    delta = reward + config["gamma"] * next_value * (1 - next_done) - value
                    gae = delta + config["gamma"] * config["gae_lambda"] * (1 - next_done) * gae
                    return (gae, value, done), gae

                _, advantages = jax.lax.scan(
                    _get_advantages,
                    (jnp.zeros_like(last_val), last_val, last_done),
                    traj_batch,
                    reverse=True,
                    unroll=16,
                )
                return advantages, advantages + traj_batch.value

            advantages, targets = _calculate_gae(traj_batch, last_val, last_done)

            # UPDATE NETWORK
            def _update_epoch(update_state, unused):
                def _update_minbatch(train_state, batch_info):
                    init_hstate, traj_batch, advantages, targets = batch_info

                    def _loss_fn(params, init_hstate, traj_batch, gae, targets):
                        # RERUN NETWORK
                        _, pi, value = network.apply(params, init_hstate[0], (traj_batch.obs, traj_batch.done))
                        log_prob = pi.log_prob(traj_batch.action)

                        # CALCULATE VALUE LOSS
                        value_pred_clipped = traj_batch.value + (value - traj_batch.value).clip(
                            -config["clip_eps"], config["clip_eps"]
                        )
                        value_losses = jnp.square(value - targets)
                        value_losses_clipped = jnp.square(value_pred_clipped - targets)
                        value_loss = 0.5 * jnp.maximum(value_losses, value_losses_clipped).mean()

                        # CALCULATE ACTOR LOSS
                        ratio = jnp.exp(log_prob - traj_batch.log_prob)
                        gae = (gae - gae.mean()) / (gae.std() + 1e-8)
                        loss_actor1 = ratio * gae
                        loss_actor2 = (
                            jnp.clip(
                                ratio,
                                1.0 - config["clip_eps"],
                                1.0 + config["clip_eps"],
                            )
                            * gae
                        )
                        loss_actor = -jnp.minimum(loss_actor1, loss_actor2)
                        loss_actor = loss_actor.mean()
                        entropy = pi.entropy().mean()

                        total_loss = loss_actor + config["vf_coef"] * value_loss - config["ent_coef"] * entropy
                        return total_loss, (value_loss, loss_actor, entropy)

                    grad_fn = jax.value_and_grad(_loss_fn, has_aux=True)
                    total_loss, grads = grad_fn(train_state.params, init_hstate, traj_batch, advantages, targets)
                    train_state = train_state.apply_gradients(grads=grads)
                    return train_state, total_loss

                (
                    train_state,
                    init_hstate,
                    traj_batch,
                    advantages,
                    targets,
                    rng,
                ) = update_state
                rng, _rng = jax.random.split(rng)
                permutation = jax.random.permutation(_rng, config["num_train_envs"])
                batch = (init_hstate, traj_batch, advantages, targets)

                shuffled_batch = jax.tree_util.tree_map(lambda x: jnp.take(x, permutation, axis=1), batch)

                minibatches = jax.tree_util.tree_map(
                    lambda x: jnp.swapaxes(
                        jnp.reshape(
                            x,
                            [x.shape[0], config["num_minibatches"], -1] + list(x.shape[2:]),
                        ),
                        1,
                        0,
                    ),
                    shuffled_batch,
                )

                train_state, total_loss = jax.lax.scan(_update_minbatch, train_state, minibatches)
                update_state = (
                    train_state,
                    init_hstate,
                    traj_batch,
                    advantages,
                    targets,
                    rng,
                )
                return update_state, total_loss

            init_hstate = initial_hstate[None, :]  # TBH
            update_state = (
                train_state,
                init_hstate,
                traj_batch,
                advantages,
                targets,
                rng,
            )
            update_state, loss_info = jax.lax.scan(_update_epoch, update_state, None, config["update_epochs"])
            train_state = update_state[0]
            metric = jax.tree.map(
                lambda x: (x * traj_batch.info["returned_episode"]).sum() / traj_batch.info["returned_episode"].sum(),
                traj_batch.info,
            )
            rng = update_state[-1]

            if config["use_wandb"]:
                vid_frequency = get_video_frequency(config, update_step)
                rng, _rng = jax.random.split(rng)
                to_log_videos = _vmapped_eval_step(runner_state, _rng)
                should_log_videos = update_step % vid_frequency == 0
                first = jax.lax.cond(
                    should_log_videos,
                    lambda: jax.vmap(jax.vmap(pixel_render_fn))(to_log_videos[0].env_state.env_state.env_state),
                    lambda: (
                        jnp.zeros(
                            (
                                env_params.max_timesteps,
                                config["num_eval_levels"],
                                *PixelObservations(env_params, render_static_env_params)
                                .observation_space(env_params)
                                .shape,
                            )
                        )
                    ),
                )
                to_log_videos = (first, should_log_videos, *to_log_videos[1:])

                def callback(metric, raw_info, loss_info, update_step, to_log_videos):
                    to_log = {}
                    to_log["timing/num_updates"] = update_step
                    to_log["timing/num_env_steps"] = update_step * config["num_steps"] * config["num_train_envs"]
                    (
                        obs_vid,
                        should_log_videos,
                        idx_vid,
                        eval_return_vid,
                        eval_return_mean,
                        eval_eplen_mean,
                        eval_solverate_mean,
                    ) = to_log_videos
                    to_log["eval/mean_eval_return"] = eval_return_mean.mean()
                    to_log["eval/mean_eval_eplen"] = eval_eplen_mean.mean()
                    for i, eval_name in enumerate(config["eval_levels"]):
                        return_on_video = eval_return_vid[i]
                        to_log[f"eval_video/return_{eval_name}"] = return_on_video
                        to_log[f"eval_video/len_{eval_name}"] = idx_vid[i]
                        to_log[f"eval_avg/return_{eval_name}"] = eval_return_mean[i]
                        to_log[f"eval_avg/solve_rate_{eval_name}"] = eval_solverate_mean[i]

                    if should_log_videos:
                        for i, eval_name in enumerate(config["eval_levels"]):
                            obs_to_use = obs_vid[: idx_vid[i], i]
                            obs_to_use = np.asarray(obs_to_use).transpose(0, 3, 2, 1)[:, :, ::-1, :]
                            to_log[f"media/eval_video_{eval_name}"] = wandb.Video((obs_to_use * 255).astype(np.uint8))

                    wandb.log(to_log)

                jax.debug.callback(callback, metric, traj_batch.info, loss_info, update_step, to_log_videos)

            runner_state = (
                train_state,
                env_state,
                last_obs,
                last_done,
                hstate,
                rng,
                update_step + 1,
            )
            return runner_state, metric

        rng, _rng = jax.random.split(rng)
        runner_state = (
            train_state,
            env_state,
            obsv,
            jnp.zeros((config["num_train_envs"]), dtype=bool),
            init_hstate,
            _rng,
            0,
        )
        runner_state, metric = jax.lax.scan(_update_step, runner_state, None, config["num_updates"])
        return {"runner_state": runner_state, "metric": metric}

    return train


@hydra.main(version_base=None, config_path="../configs", config_name="ppo")
def main(config):
    config = normalise_config(OmegaConf.to_container(config), "PPO")
    env_params, static_env_params = generate_params_from_config(config)
    config["env_params"] = to_state_dict(env_params)
    config["static_env_params"] = to_state_dict(static_env_params)

    if config["use_wandb"]:
        run = init_wandb(config, "PPO")

    rng = jax.random.PRNGKey(config["seed"])
    rng, _rng = jax.random.split(rng)
    train_jit = jax.jit(make_train(config, env_params, static_env_params))

    out = train_jit(_rng)

    if config["use_wandb"]:
        if config["save_policy"]:
            train_state = jax.tree.map(lambda x: x, out["runner_state"][0])
            save_model_to_wandb(train_state, config["total_timesteps"], config)


if __name__ == "__main__":
    main()