Spaces:
Runtime error
Runtime error
File size: 45,130 Bytes
e0f25ed |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 |
"""
Based on PureJaxRL Implementation of PPO
"""
import os
import sys
import time
import typing
from functools import partial
from typing import NamedTuple
import chex
import hydra
import jax
import jax.experimental
import jax.numpy as jnp
import matplotlib.pyplot as plt
import numpy as np
import optax
from flax.training.train_state import TrainState
from kinetix.environment.ued.ued import make_reset_train_function_with_mutations, make_vmapped_filtered_level_sampler
from kinetix.environment.ued.ued import (
make_reset_train_function_with_list_of_levels,
make_reset_train_function_with_mutations,
)
from kinetix.util.config import (
generate_ued_params_from_config,
init_wandb,
normalise_config,
generate_params_from_config,
get_eval_level_groups,
)
from jaxued.environments.underspecified_env import EnvParams, EnvState, Observation, UnderspecifiedEnv
from omegaconf import OmegaConf
from PIL import Image
from flax.serialization import to_state_dict
import wandb
from kinetix.environment.env import make_kinetix_env_from_name
from kinetix.environment.wrappers import (
AutoReplayWrapper,
DenseRewardWrapper,
LogWrapper,
UnderspecifiedToGymnaxWrapper,
)
from kinetix.models import make_network_from_config
from kinetix.models.actor_critic import ScannedRNN
from kinetix.render.renderer_pixels import make_render_pixels
from kinetix.util.learning import general_eval, get_eval_levels
from kinetix.util.saving import (
load_train_state_from_wandb_artifact_path,
save_model_to_wandb,
)
sys.path.append("ued")
from flax.traverse_util import flatten_dict, unflatten_dict
from safetensors.flax import load_file, save_file
def save_params(params: typing.Dict, filename: typing.Union[str, os.PathLike]) -> None:
flattened_dict = flatten_dict(params, sep=",")
save_file(flattened_dict, filename)
def load_params(filename: typing.Union[str, os.PathLike]) -> typing.Dict:
flattened_dict = load_file(filename)
return unflatten_dict(flattened_dict, sep=",")
class Transition(NamedTuple):
global_done: jnp.ndarray
done: jnp.ndarray
action: jnp.ndarray
value: jnp.ndarray
reward: jnp.ndarray
log_prob: jnp.ndarray
obs: jnp.ndarray
info: jnp.ndarray
class RolloutBatch(NamedTuple):
obs: jnp.ndarray
actions: jnp.ndarray
rewards: jnp.ndarray
dones: jnp.ndarray
log_probs: jnp.ndarray
values: jnp.ndarray
targets: jnp.ndarray
advantages: jnp.ndarray
# carry: jnp.ndarray
mask: jnp.ndarray
def evaluate_rnn(
rng: chex.PRNGKey,
env: UnderspecifiedEnv,
env_params: EnvParams,
train_state: TrainState,
init_hstate: chex.ArrayTree,
init_obs: Observation,
init_env_state: EnvState,
max_episode_length: int,
keep_states=True,
) -> tuple[chex.Array, chex.Array, chex.Array]:
"""This runs the RNN on the environment, given an initial state and observation, and returns (states, rewards, episode_lengths)
Args:
rng (chex.PRNGKey):
env (UnderspecifiedEnv):
env_params (EnvParams):
train_state (TrainState):
init_hstate (chex.ArrayTree): Shape (num_levels, )
init_obs (Observation): Shape (num_levels, )
init_env_state (EnvState): Shape (num_levels, )
max_episode_length (int):
Returns:
Tuple[chex.Array, chex.Array, chex.Array]: (States, rewards, episode lengths) ((NUM_STEPS, NUM_LEVELS), (NUM_STEPS, NUM_LEVELS), (NUM_LEVELS,)
"""
num_levels = jax.tree_util.tree_flatten(init_obs)[0][0].shape[0]
def step(carry, _):
rng, hstate, obs, state, done, mask, episode_length = carry
rng, rng_action, rng_step = jax.random.split(rng, 3)
x = jax.tree.map(lambda x: x[None, ...], (obs, done))
hstate, pi, _ = train_state.apply_fn(train_state.params, hstate, x)
action = pi.sample(seed=rng_action).squeeze(0)
obs, next_state, reward, done, info = jax.vmap(env.step, in_axes=(0, 0, 0, None))(
jax.random.split(rng_step, num_levels), state, action, env_params
)
next_mask = mask & ~done
episode_length += mask
if keep_states:
return (rng, hstate, obs, next_state, done, next_mask, episode_length), (state, reward, info)
else:
return (rng, hstate, obs, next_state, done, next_mask, episode_length), (None, reward, info)
(_, _, _, _, _, _, episode_lengths), (states, rewards, infos) = jax.lax.scan(
step,
(
rng,
init_hstate,
init_obs,
init_env_state,
jnp.zeros(num_levels, dtype=bool),
jnp.ones(num_levels, dtype=bool),
jnp.zeros(num_levels, dtype=jnp.int32),
),
None,
length=max_episode_length,
)
return states, rewards, episode_lengths, infos
@hydra.main(version_base=None, config_path="../configs", config_name="sfl")
def main(config):
time_start = time.time()
config = OmegaConf.to_container(config)
config = normalise_config(config, "SFL" if config["ued"]["sampled_envs_ratio"] > 0 else "SFL-DR")
env_params, static_env_params = generate_params_from_config(config)
config["env_params"] = to_state_dict(env_params)
config["static_env_params"] = to_state_dict(static_env_params)
run = init_wandb(config, "SFL")
rng = jax.random.PRNGKey(config["seed"])
config["num_envs_from_sampled"] = int(config["num_train_envs"] * config["sampled_envs_ratio"])
config["num_envs_to_generate"] = int(config["num_train_envs"] * (1 - config["sampled_envs_ratio"]))
assert (config["num_envs_from_sampled"] + config["num_envs_to_generate"]) == config["num_train_envs"]
def make_env(static_env_params):
env = make_kinetix_env_from_name(config["env_name"], static_env_params=static_env_params)
env = AutoReplayWrapper(env)
env = UnderspecifiedToGymnaxWrapper(env)
env = DenseRewardWrapper(env, dense_reward_scale=config["dense_reward_scale"])
env = LogWrapper(env)
return env
env = make_env(static_env_params)
if config["train_level_mode"] == "list":
sample_random_level = make_reset_train_function_with_list_of_levels(
config, config["train_levels"], static_env_params, make_pcg_state=False, is_loading_train_levels=True
)
elif config["train_level_mode"] == "random":
sample_random_level = make_reset_train_function_with_mutations(
env.physics_engine, env_params, static_env_params, config, make_pcg_state=False
)
else:
raise ValueError(f"Unknown train_level_mode: {config['train_level_mode']}")
sample_random_levels = make_vmapped_filtered_level_sampler(
sample_random_level, env_params, static_env_params, config, make_pcg_state=False, env=env
)
_, eval_static_env_params = generate_params_from_config(
config["eval_env_size_true"] | {"frame_skip": config["frame_skip"]}
)
eval_env = make_env(eval_static_env_params)
ued_params = generate_ued_params_from_config(config)
def make_render_fn(static_env_params):
render_fn_inner = make_render_pixels(env_params, static_env_params)
render_fn = lambda x: render_fn_inner(x).transpose(1, 0, 2)[::-1]
return render_fn
render_fn = make_render_fn(static_env_params)
render_fn_eval = make_render_fn(eval_static_env_params)
NUM_EVAL_DR_LEVELS = 200
key_to_sample_dr_eval_set = jax.random.PRNGKey(100)
DR_EVAL_LEVELS = sample_random_levels(key_to_sample_dr_eval_set, NUM_EVAL_DR_LEVELS)
print("Hello here num steps is ", config["num_steps"])
print("CONFIG is ", config)
config["total_timesteps"] = config["num_updates"] * config["num_steps"] * config["num_train_envs"]
config["minibatch_size"] = config["num_train_envs"] * config["num_steps"] // config["num_minibatches"]
config["clip_eps"] = config["clip_eps"]
config["env_name"] = config["env_name"]
network = make_network_from_config(env, env_params, config)
def linear_schedule(count):
count = count // (config["num_minibatches"] * config["update_epochs"])
frac = 1.0 - count / config["num_updates"]
return config["lr"] * frac
# INIT NETWORK
rng, _rng = jax.random.split(rng)
train_envs = 32 # To not run out of memory, the initial sample size does not matter.
obs, _ = env.reset_to_level(rng, sample_random_level(rng), env_params)
obs = jax.tree.map(
lambda x: jnp.repeat(jnp.repeat(x[None, ...], train_envs, axis=0)[None, ...], 256, axis=0),
obs,
)
init_x = (obs, jnp.zeros((256, train_envs)))
init_hstate = ScannedRNN.initialize_carry(train_envs)
network_params = network.init(_rng, init_hstate, init_x)
if config["anneal_lr"]:
tx = optax.chain(
optax.clip_by_global_norm(config["max_grad_norm"]),
optax.adam(learning_rate=linear_schedule, eps=1e-5),
)
else:
tx = optax.chain(
optax.clip_by_global_norm(config["max_grad_norm"]),
optax.adam(config["lr"], eps=1e-5),
)
train_state = TrainState.create(
apply_fn=network.apply,
params=network_params,
tx=tx,
)
if config["load_from_checkpoint"] != None:
print("LOADING from", config["load_from_checkpoint"], "with only params =", config["load_only_params"])
train_state = load_train_state_from_wandb_artifact_path(
train_state,
config["load_from_checkpoint"],
load_only_params=config["load_only_params"],
legacy=config["load_legacy_checkpoint"],
)
rng, _rng = jax.random.split(rng)
# INIT ENV
rng, _rng, _rng2 = jax.random.split(rng, 3)
rng_reset = jax.random.split(_rng, config["num_train_envs"])
new_levels = sample_random_levels(_rng2, config["num_train_envs"])
obsv, env_state = jax.vmap(env.reset_to_level, in_axes=(0, 0, None))(rng_reset, new_levels, env_params)
start_state = env_state
init_hstate = ScannedRNN.initialize_carry(config["num_train_envs"])
@jax.jit
def log_buffer_learnability(rng, train_state, instances):
BATCH_SIZE = config["num_to_save"]
BATCH_ACTORS = BATCH_SIZE
def _batch_step(unused, rng):
def _env_step(runner_state, unused):
env_state, start_state, last_obs, last_done, hstate, rng = runner_state
# SELECT ACTION
rng, _rng = jax.random.split(rng)
obs_batch = last_obs
ac_in = (
jax.tree.map(lambda x: x[np.newaxis, :], obs_batch),
last_done[np.newaxis, :],
)
hstate, pi, value = network.apply(train_state.params, hstate, ac_in)
action = pi.sample(seed=_rng).squeeze()
log_prob = pi.log_prob(action)
env_act = action
# STEP ENV
rng, _rng = jax.random.split(rng)
rng_step = jax.random.split(_rng, config["num_to_save"])
obsv, env_state, reward, done, info = jax.vmap(env.step, in_axes=(0, 0, 0, None))(
rng_step, env_state, env_act, env_params
)
done_batch = done
transition = Transition(
done,
last_done,
action.squeeze(),
value.squeeze(),
reward,
log_prob.squeeze(),
obs_batch,
info,
)
runner_state = (env_state, start_state, obsv, done_batch, hstate, rng)
return runner_state, transition
@partial(jax.vmap, in_axes=(None, 1, 1, 1))
@partial(jax.jit, static_argnums=(0,))
def _calc_outcomes_by_agent(max_steps: int, dones, returns, info):
idxs = jnp.arange(max_steps)
@partial(jax.vmap, in_axes=(0, 0))
def __ep_outcomes(start_idx, end_idx):
mask = (idxs > start_idx) & (idxs <= end_idx) & (end_idx != max_steps)
r = jnp.sum(returns * mask)
goal_r = info["GoalR"] # (returns > 0) * 1.0
success = jnp.sum(goal_r * mask)
l = end_idx - start_idx
return r, success, l
done_idxs = jnp.argwhere(dones, size=50, fill_value=max_steps).squeeze()
mask_done = jnp.where(done_idxs == max_steps, 0, 1)
ep_return, success, length = __ep_outcomes(
jnp.concatenate([jnp.array([-1]), done_idxs[:-1]]), done_idxs
)
return {
"ep_return": ep_return.mean(where=mask_done),
"num_episodes": mask_done.sum(),
"success_rate": success.mean(where=mask_done),
"ep_len": length.mean(where=mask_done),
}
# sample envs
rng, _rng, _rng2 = jax.random.split(rng, 3)
rng_reset = jax.random.split(_rng, config["num_to_save"])
rng_levels = jax.random.split(_rng2, config["num_to_save"])
# obsv, env_state = jax.vmap(sample_random_level, in_axes=(0,))(reset_rng)
# new_levels = jax.vmap(sample_random_level)(rng_levels)
obsv, env_state = jax.vmap(env.reset_to_level, in_axes=(0, 0, None))(rng_reset, instances, env_params)
# env_instances = new_levels
init_hstate = ScannedRNN.initialize_carry(
BATCH_ACTORS,
)
runner_state = (env_state, env_state, obsv, jnp.zeros((BATCH_ACTORS), dtype=bool), init_hstate, rng)
runner_state, traj_batch = jax.lax.scan(_env_step, runner_state, None, config["rollout_steps"])
done_by_env = traj_batch.done.reshape((-1, config["num_to_save"]))
reward_by_env = traj_batch.reward.reshape((-1, config["num_to_save"]))
# info_by_actor = jax.tree.map(lambda x: x.swapaxes(2, 1).reshape((-1, BATCH_ACTORS)), traj_batch.info)
o = _calc_outcomes_by_agent(config["rollout_steps"], traj_batch.done, traj_batch.reward, traj_batch.info)
success_by_env = o["success_rate"].reshape((1, config["num_to_save"]))
learnability_by_env = (success_by_env * (1 - success_by_env)).sum(axis=0)
return None, (learnability_by_env, success_by_env.sum(axis=0))
rngs = jax.random.split(rng, 1)
_, (learnability, success_by_env) = jax.lax.scan(_batch_step, None, rngs, 1)
return learnability[0], success_by_env[0]
num_eval_levels = len(config["eval_levels"])
all_eval_levels = get_eval_levels(config["eval_levels"], eval_env.static_env_params)
eval_group_indices = get_eval_level_groups(config["eval_levels"])
print("group indices", eval_group_indices)
@jax.jit
def get_learnability_set(rng, network_params):
BATCH_ACTORS = config["batch_size"]
def _batch_step(unused, rng):
def _env_step(runner_state, unused):
env_state, start_state, last_obs, last_done, hstate, rng = runner_state
# SELECT ACTION
rng, _rng = jax.random.split(rng)
obs_batch = last_obs
ac_in = (
jax.tree.map(lambda x: x[np.newaxis, :], obs_batch),
last_done[np.newaxis, :],
)
hstate, pi, value = network.apply(network_params, hstate, ac_in)
action = pi.sample(seed=_rng).squeeze()
log_prob = pi.log_prob(action)
env_act = action
# STEP ENV
rng, _rng = jax.random.split(rng)
rng_step = jax.random.split(_rng, config["batch_size"])
obsv, env_state, reward, done, info = jax.vmap(env.step, in_axes=(0, 0, 0, None))(
rng_step, env_state, env_act, env_params
)
done_batch = done
transition = Transition(
done,
last_done,
action.squeeze(),
value.squeeze(),
reward,
log_prob.squeeze(),
obs_batch,
info,
)
runner_state = (env_state, start_state, obsv, done_batch, hstate, rng)
return runner_state, transition
@partial(jax.vmap, in_axes=(None, 1, 1, 1))
@partial(jax.jit, static_argnums=(0,))
def _calc_outcomes_by_agent(max_steps: int, dones, returns, info):
idxs = jnp.arange(max_steps)
@partial(jax.vmap, in_axes=(0, 0))
def __ep_outcomes(start_idx, end_idx):
mask = (idxs > start_idx) & (idxs <= end_idx) & (end_idx != max_steps)
r = jnp.sum(returns * mask)
goal_r = info["GoalR"] # (returns > 0) * 1.0
success = jnp.sum(goal_r * mask)
l = end_idx - start_idx
return r, success, l
done_idxs = jnp.argwhere(dones, size=50, fill_value=max_steps).squeeze()
mask_done = jnp.where(done_idxs == max_steps, 0, 1)
ep_return, success, length = __ep_outcomes(
jnp.concatenate([jnp.array([-1]), done_idxs[:-1]]), done_idxs
)
return {
"ep_return": ep_return.mean(where=mask_done),
"num_episodes": mask_done.sum(),
"success_rate": success.mean(where=mask_done),
"ep_len": length.mean(where=mask_done),
}
# sample envs
rng, _rng, _rng2 = jax.random.split(rng, 3)
rng_reset = jax.random.split(_rng, config["batch_size"])
new_levels = sample_random_levels(_rng2, config["batch_size"])
obsv, env_state = jax.vmap(env.reset_to_level, in_axes=(0, 0, None))(rng_reset, new_levels, env_params)
env_instances = new_levels
init_hstate = ScannedRNN.initialize_carry(
BATCH_ACTORS,
)
runner_state = (env_state, env_state, obsv, jnp.zeros((BATCH_ACTORS), dtype=bool), init_hstate, rng)
runner_state, traj_batch = jax.lax.scan(_env_step, runner_state, None, config["rollout_steps"])
done_by_env = traj_batch.done.reshape((-1, config["batch_size"]))
reward_by_env = traj_batch.reward.reshape((-1, config["batch_size"]))
# info_by_actor = jax.tree.map(lambda x: x.swapaxes(2, 1).reshape((-1, BATCH_ACTORS)), traj_batch.info)
o = _calc_outcomes_by_agent(config["rollout_steps"], traj_batch.done, traj_batch.reward, traj_batch.info)
success_by_env = o["success_rate"].reshape((1, config["batch_size"]))
learnability_by_env = (success_by_env * (1 - success_by_env)).sum(axis=0)
return None, (learnability_by_env, success_by_env.sum(axis=0), env_instances)
if config["sampled_envs_ratio"] == 0.0:
print("Not doing any rollouts because sampled_envs_ratio is 0.0")
# Here we have zero envs, so we can literally just sample random ones because there is no point.
top_instances = sample_random_levels(_rng, config["num_to_save"])
top_success = top_learn = learnability = success_rates = jnp.zeros(config["num_to_save"])
else:
rngs = jax.random.split(rng, config["num_batches"])
_, (learnability, success_rates, env_instances) = jax.lax.scan(
_batch_step, None, rngs, config["num_batches"]
)
flat_env_instances = jax.tree.map(lambda x: x.reshape((-1,) + x.shape[2:]), env_instances)
learnability = learnability.flatten() + success_rates.flatten() * 0.001
top_1000 = jnp.argsort(learnability)[-config["num_to_save"] :]
top_1000_instances = jax.tree.map(lambda x: x.at[top_1000].get(), flat_env_instances)
top_learn, top_instances = learnability.at[top_1000].get(), top_1000_instances
top_success = success_rates.at[top_1000].get()
if config["put_eval_levels_in_buffer"]:
top_instances = jax.tree.map(
lambda all, new: jnp.concatenate([all[:-num_eval_levels], new], axis=0),
top_instances,
all_eval_levels.env_state,
)
log = {
"learnability/learnability_sampled_mean": learnability.mean(),
"learnability/learnability_sampled_median": jnp.median(learnability),
"learnability/learnability_sampled_min": learnability.min(),
"learnability/learnability_sampled_max": learnability.max(),
"learnability/learnability_selected_mean": top_learn.mean(),
"learnability/learnability_selected_median": jnp.median(top_learn),
"learnability/learnability_selected_min": top_learn.min(),
"learnability/learnability_selected_max": top_learn.max(),
"learnability/solve_rate_sampled_mean": top_success.mean(),
"learnability/solve_rate_sampled_median": jnp.median(top_success),
"learnability/solve_rate_sampled_min": top_success.min(),
"learnability/solve_rate_sampled_max": top_success.max(),
"learnability/solve_rate_selected_mean": success_rates.mean(),
"learnability/solve_rate_selected_median": jnp.median(success_rates),
"learnability/solve_rate_selected_min": success_rates.min(),
"learnability/solve_rate_selected_max": success_rates.max(),
}
return top_learn, top_instances, log
def eval(rng: chex.PRNGKey, train_state: TrainState, keep_states=True):
"""
This evaluates the current policy on the set of evaluation levels specified by config["eval_levels"].
It returns (states, cum_rewards, episode_lengths), with shapes (num_steps, num_eval_levels, ...), (num_eval_levels,), (num_eval_levels,)
"""
num_levels = len(config["eval_levels"])
# eval_levels = get_eval_levels(config["eval_levels"], eval_env.static_env_params)
return general_eval(
rng,
eval_env,
env_params,
train_state,
all_eval_levels,
env_params.max_timesteps,
num_levels,
keep_states=keep_states,
return_trajectories=True,
)
def eval_on_dr_levels(rng: chex.PRNGKey, train_state: TrainState, keep_states=False):
return general_eval(
rng,
env,
env_params,
train_state,
DR_EVAL_LEVELS,
env_params.max_timesteps,
NUM_EVAL_DR_LEVELS,
keep_states=keep_states,
)
def eval_on_top_learnable_levels(rng: chex.PRNGKey, train_state: TrainState, levels, keep_states=True):
N = 5
return general_eval(
rng,
env,
env_params,
train_state,
jax.tree.map(lambda x: x[:N], levels),
env_params.max_timesteps,
N,
keep_states=keep_states,
)
# TRAIN LOOP
def train_step(runner_state_instances, unused):
# COLLECT TRAJECTORIES
runner_state, instances = runner_state_instances
num_env_instances = instances.polygon.position.shape[0]
def _env_step(runner_state, unused):
train_state, env_state, start_state, last_obs, last_done, hstate, update_steps, rng = runner_state
# SELECT ACTION
rng, _rng = jax.random.split(rng)
obs_batch = last_obs
ac_in = (
jax.tree.map(lambda x: x[np.newaxis, :], obs_batch),
last_done[np.newaxis, :],
)
hstate, pi, value = network.apply(train_state.params, hstate, ac_in)
action = pi.sample(seed=_rng).squeeze()
log_prob = pi.log_prob(action)
env_act = action
# STEP ENV
rng, _rng = jax.random.split(rng)
rng_step = jax.random.split(_rng, config["num_train_envs"])
obsv, env_state, reward, done, info = jax.vmap(env.step, in_axes=(0, 0, 0, None))(
rng_step, env_state, env_act, env_params
)
done_batch = done
transition = Transition(
done,
last_done,
action.squeeze(),
value.squeeze(),
reward,
log_prob.squeeze(),
obs_batch,
info,
)
runner_state = (train_state, env_state, start_state, obsv, done_batch, hstate, update_steps, rng)
return runner_state, (transition)
initial_hstate = runner_state[-3]
runner_state, traj_batch = jax.lax.scan(_env_step, runner_state, None, config["num_steps"])
# CALCULATE ADVANTAGE
train_state, env_state, start_state, last_obs, last_done, hstate, update_steps, rng = runner_state
last_obs_batch = last_obs # batchify(last_obs, env.agents, config["num_train_envs"])
ac_in = (
jax.tree.map(lambda x: x[np.newaxis, :], last_obs_batch),
last_done[np.newaxis, :],
)
_, _, last_val = network.apply(train_state.params, hstate, ac_in)
last_val = last_val.squeeze()
def _calculate_gae(traj_batch, last_val):
def _get_advantages(gae_and_next_value, transition: Transition):
gae, next_value = gae_and_next_value
done, value, reward = (
transition.global_done,
transition.value,
transition.reward,
)
delta = reward + config["gamma"] * next_value * (1 - done) - value
gae = delta + config["gamma"] * config["gae_lambda"] * (1 - done) * gae
return (gae, value), gae
_, advantages = jax.lax.scan(
_get_advantages,
(jnp.zeros_like(last_val), last_val),
traj_batch,
reverse=True,
unroll=16,
)
return advantages, advantages + traj_batch.value
advantages, targets = _calculate_gae(traj_batch, last_val)
# UPDATE NETWORK
def _update_epoch(update_state, unused):
def _update_minbatch(train_state, batch_info):
init_hstate, traj_batch, advantages, targets = batch_info
def _loss_fn_masked(params, init_hstate, traj_batch, gae, targets):
# RERUN NETWORK
_, pi, value = network.apply(
params,
jax.tree.map(lambda x: x.transpose(), init_hstate),
(traj_batch.obs, traj_batch.done),
)
log_prob = pi.log_prob(traj_batch.action)
# CALCULATE VALUE LOSS
value_pred_clipped = traj_batch.value + (value - traj_batch.value).clip(
-config["clip_eps"], config["clip_eps"]
)
value_losses = jnp.square(value - targets)
value_losses_clipped = jnp.square(value_pred_clipped - targets)
value_loss = 0.5 * jnp.maximum(value_losses, value_losses_clipped)
critic_loss = config["vf_coef"] * value_loss.mean()
# CALCULATE ACTOR LOSS
logratio = log_prob - traj_batch.log_prob
ratio = jnp.exp(logratio)
# if env.do_sep_reward: gae = gae.sum(axis=-1)
gae = (gae - gae.mean()) / (gae.std() + 1e-8)
loss_actor1 = ratio * gae
loss_actor2 = (
jnp.clip(
ratio,
1.0 - config["clip_eps"],
1.0 + config["clip_eps"],
)
* gae
)
loss_actor = -jnp.minimum(loss_actor1, loss_actor2)
loss_actor = loss_actor.mean()
entropy = pi.entropy().mean()
approx_kl = jax.lax.stop_gradient(((ratio - 1) - logratio).mean())
clipfrac = jax.lax.stop_gradient((jnp.abs(ratio - 1) > config["clip_eps"]).mean())
total_loss = loss_actor + critic_loss - config["ent_coef"] * entropy
return total_loss, (value_loss, loss_actor, entropy, ratio, approx_kl, clipfrac)
grad_fn = jax.value_and_grad(_loss_fn_masked, has_aux=True)
total_loss, grads = grad_fn(train_state.params, init_hstate, traj_batch, advantages, targets)
train_state = train_state.apply_gradients(grads=grads)
return train_state, total_loss
(
train_state,
init_hstate,
traj_batch,
advantages,
targets,
rng,
) = update_state
rng, _rng = jax.random.split(rng)
init_hstate = jax.tree.map(lambda x: jnp.reshape(x, (256, config["num_train_envs"])), init_hstate)
batch = (
init_hstate,
traj_batch,
advantages.squeeze(),
targets.squeeze(),
)
permutation = jax.random.permutation(_rng, config["num_train_envs"])
shuffled_batch = jax.tree_util.tree_map(lambda x: jnp.take(x, permutation, axis=1), batch)
minibatches = jax.tree_util.tree_map(
lambda x: jnp.swapaxes(
jnp.reshape(
x,
[x.shape[0], config["num_minibatches"], -1] + list(x.shape[2:]),
),
1,
0,
),
shuffled_batch,
)
train_state, total_loss = jax.lax.scan(_update_minbatch, train_state, minibatches)
# total_loss = jax.tree.map(lambda x: x.mean(), total_loss)
update_state = (
train_state,
init_hstate,
traj_batch,
advantages,
targets,
rng,
)
return update_state, total_loss
# init_hstate = initial_hstate[None, :].squeeze().transpose()
init_hstate = jax.tree.map(lambda x: x[None, :].squeeze().transpose(), initial_hstate)
update_state = (
train_state,
init_hstate,
traj_batch,
advantages,
targets,
rng,
)
update_state, loss_info = jax.lax.scan(_update_epoch, update_state, None, config["update_epochs"])
train_state = update_state[0]
metric = traj_batch.info
metric = jax.tree.map(
lambda x: x.reshape((config["num_steps"], config["num_train_envs"])), # , env.num_agents
traj_batch.info,
)
rng = update_state[-1]
def callback(metric):
dones = metric["dones"]
wandb.log(
{
"episode_return": (metric["returned_episode_returns"] * dones).sum() / jnp.maximum(1, dones.sum()),
"episode_solved": (metric["returned_episode_solved"] * dones).sum() / jnp.maximum(1, dones.sum()),
"episode_length": (metric["returned_episode_lengths"] * dones).sum() / jnp.maximum(1, dones.sum()),
"timing/num_env_steps": int(
int(metric["update_steps"]) * int(config["num_train_envs"]) * int(config["num_steps"])
),
"timing/num_updates": metric["update_steps"],
**metric["loss_info"],
}
)
loss_info = jax.tree.map(lambda x: x.mean(), loss_info)
metric["loss_info"] = {
"loss/total_loss": loss_info[0],
"loss/value_loss": loss_info[1][0],
"loss/policy_loss": loss_info[1][1],
"loss/entropy_loss": loss_info[1][2],
}
metric["dones"] = traj_batch.done
metric["update_steps"] = update_steps
jax.experimental.io_callback(callback, None, metric)
# SAMPLE NEW ENVS
rng, _rng, _rng2 = jax.random.split(rng, 3)
rng_reset = jax.random.split(_rng, config["num_envs_to_generate"])
new_levels = sample_random_levels(_rng2, config["num_envs_to_generate"])
obsv_gen, env_state_gen = jax.vmap(env.reset_to_level, in_axes=(0, 0, None))(rng_reset, new_levels, env_params)
rng, _rng, _rng2 = jax.random.split(rng, 3)
sampled_env_instances_idxs = jax.random.randint(_rng, (config["num_envs_from_sampled"],), 0, num_env_instances)
sampled_env_instances = jax.tree.map(lambda x: x.at[sampled_env_instances_idxs].get(), instances)
myrng = jax.random.split(_rng2, config["num_envs_from_sampled"])
obsv_sampled, env_state_sampled = jax.vmap(env.reset_to_level, in_axes=(0, 0))(myrng, sampled_env_instances)
obsv = jax.tree.map(lambda x, y: jnp.concatenate([x, y], axis=0), obsv_gen, obsv_sampled)
env_state = jax.tree.map(lambda x, y: jnp.concatenate([x, y], axis=0), env_state_gen, env_state_sampled)
start_state = env_state
hstate = ScannedRNN.initialize_carry(config["num_train_envs"])
update_steps = update_steps + 1
runner_state = (
train_state,
env_state,
start_state,
obsv,
jnp.zeros((config["num_train_envs"]), dtype=bool),
hstate,
update_steps,
rng,
)
return (runner_state, instances), metric
def log_buffer(learnability, levels, epoch):
num_samples = levels.polygon.position.shape[0]
states = levels
rows = 2
fig, axes = plt.subplots(rows, int(num_samples / rows), figsize=(20, 10))
axes = axes.flatten()
all_imgs = jax.vmap(render_fn)(states)
for i, ax in enumerate(axes):
# ax.imshow(train_state.plr_buffer.get_sample(i))
score = learnability[i]
ax.imshow(all_imgs[i] / 255.0)
ax.set_xticks([])
ax.set_yticks([])
ax.set_title(f"learnability: {score:.3f}")
ax.set_aspect("equal", "box")
plt.tight_layout()
fig.canvas.draw()
im = Image.frombytes("RGB", fig.canvas.get_width_height(), fig.canvas.tostring_rgb())
plt.close()
return {"maps": wandb.Image(im)}
@jax.jit
def train_and_eval_step(runner_state, eval_rng):
learnability_rng, eval_singleton_rng, eval_sampled_rng, _rng = jax.random.split(eval_rng, 4)
# TRAIN
learnabilty_scores, instances, test_metrics = get_learnability_set(learnability_rng, runner_state[0].params)
if config["log_learnability_before_after"]:
learn_scores_before, success_score_before = log_buffer_learnability(
learnability_rng, runner_state[0], instances
)
print("instance size", sum(x.size for x in jax.tree_util.tree_leaves(instances)))
runner_state_instances = (runner_state, instances)
runner_state_instances, metrics = jax.lax.scan(train_step, runner_state_instances, None, config["eval_freq"])
if config["log_learnability_before_after"]:
learn_scores_after, success_score_after = log_buffer_learnability(
learnability_rng, runner_state_instances[0][0], instances
)
# EVAL
rng, rng_eval = jax.random.split(eval_singleton_rng)
(states, cum_rewards, _, episode_lengths, eval_infos), (eval_dones, eval_rewards) = jax.vmap(eval, (0, None))(
jax.random.split(rng_eval, config["eval_num_attempts"]), runner_state_instances[0][0]
)
all_eval_eplens = episode_lengths
# Collect Metrics
eval_returns = cum_rewards.mean(axis=0) # (num_eval_levels,)
eval_solves = (eval_infos["returned_episode_solved"] * eval_dones).sum(axis=1) / jnp.maximum(
1, eval_dones.sum(axis=1)
)
eval_solves = eval_solves.mean(axis=0)
# just grab the first run
states, episode_lengths = jax.tree_util.tree_map(
lambda x: x[0], (states, episode_lengths)
) # (num_steps, num_eval_levels, ...), (num_eval_levels,)
# And one attempt
states = jax.tree_util.tree_map(lambda x: x[:, :], states)
episode_lengths = episode_lengths[:]
images = jax.vmap(jax.vmap(render_fn_eval))(
states.env_state.env_state.env_state
) # (num_steps, num_eval_levels, ...)
frames = images.transpose(
0, 1, 4, 2, 3
) # WandB expects color channel before image dimensions when dealing with animations for some reason
test_metrics["update_count"] = runner_state[-2]
test_metrics["eval_returns"] = eval_returns
test_metrics["eval_ep_lengths"] = episode_lengths
test_metrics["eval_animation"] = (frames, episode_lengths)
# Eval on sampled
dr_states, dr_cum_rewards, _, dr_episode_lengths, dr_infos = jax.vmap(eval_on_dr_levels, (0, None))(
jax.random.split(rng_eval, config["eval_num_attempts"]), runner_state_instances[0][0]
)
eval_dr_returns = dr_cum_rewards.mean(axis=0).mean()
eval_dr_eplen = dr_episode_lengths.mean(axis=0).mean()
test_metrics["eval/mean_eval_return_sampled"] = eval_dr_returns
my_eval_dones = dr_infos["returned_episode"]
eval_dr_solves = (dr_infos["returned_episode_solved"] * my_eval_dones).sum(axis=1) / jnp.maximum(
1, my_eval_dones.sum(axis=1)
)
test_metrics["eval/mean_eval_solve_rate_sampled"] = eval_dr_solves
test_metrics["eval/mean_eval_eplen_sampled"] = eval_dr_eplen
# Collect Metrics
eval_returns = cum_rewards.mean(axis=0) # (num_eval_levels,)
log_dict = {}
log_dict["to_remove"] = {
"eval_return": eval_returns,
"eval_solve_rate": eval_solves,
"eval_eplen": all_eval_eplens,
}
for i, name in enumerate(config["eval_levels"]):
log_dict[f"eval_avg_return/{name}"] = eval_returns[i]
log_dict[f"eval_avg_solve_rate/{name}"] = eval_solves[i]
log_dict.update({"eval/mean_eval_return": eval_returns.mean()})
log_dict.update({"eval/mean_eval_solve_rate": eval_solves.mean()})
log_dict.update({"eval/mean_eval_eplen": all_eval_eplens.mean()})
test_metrics.update(log_dict)
runner_state, _ = runner_state_instances
test_metrics["update_count"] = runner_state[-2]
top_instances = jax.tree.map(lambda x: x.at[-5:].get(), instances)
# Eval on top learnable levels
tl_states, tl_cum_rewards, _, tl_episode_lengths, tl_infos = jax.vmap(
eval_on_top_learnable_levels, (0, None, None)
)(jax.random.split(rng_eval, config["eval_num_attempts"]), runner_state_instances[0][0], top_instances)
# just grab the first run
states, episode_lengths = jax.tree_util.tree_map(
lambda x: x[0], (tl_states, tl_episode_lengths)
) # (num_steps, num_eval_levels, ...), (num_eval_levels,)
# And one attempt
states = jax.tree_util.tree_map(lambda x: x[:, :], states)
episode_lengths = episode_lengths[:]
images = jax.vmap(jax.vmap(render_fn))(
states.env_state.env_state.env_state
) # (num_steps, num_eval_levels, ...)
frames = images.transpose(
0, 1, 4, 2, 3
) # WandB expects color channel before image dimensions when dealing with animations for some reason
test_metrics["top_learnable_animation"] = (frames, episode_lengths, tl_cum_rewards)
if config["log_learnability_before_after"]:
def single(x, name):
return {
f"{name}_mean": x.mean(),
f"{name}_std": x.std(),
f"{name}_min": x.min(),
f"{name}_max": x.max(),
f"{name}_median": jnp.median(x),
}
test_metrics["learnability_log_v2/"] = {
**single(learn_scores_before, "learnability_before"),
**single(learn_scores_after, "learnability_after"),
**single(success_score_before, "success_score_before"),
**single(success_score_after, "success_score_after"),
}
return runner_state, (learnabilty_scores.at[-20:].get(), top_instances), test_metrics
rng, _rng = jax.random.split(rng)
runner_state = (
train_state,
env_state,
start_state,
obsv,
jnp.zeros((config["num_train_envs"]), dtype=bool),
init_hstate,
0,
_rng,
)
def log_eval(stats):
log_dict = {}
to_remove = stats["to_remove"]
del stats["to_remove"]
def _aggregate_per_size(values, name):
to_return = {}
for group_name, indices in eval_group_indices.items():
to_return[f"{name}_{group_name}"] = values[indices].mean()
return to_return
env_steps = stats["update_count"] * config["num_train_envs"] * config["num_steps"]
env_steps_delta = config["eval_freq"] * config["num_train_envs"] * config["num_steps"]
time_now = time.time()
log_dict = {
"timing/num_updates": stats["update_count"],
"timing/num_env_steps": env_steps,
"timing/sps": env_steps_delta / stats["time_delta"],
"timing/sps_agg": env_steps / (time_now - time_start),
}
log_dict.update(_aggregate_per_size(to_remove["eval_return"], "eval_aggregate/return"))
log_dict.update(_aggregate_per_size(to_remove["eval_solve_rate"], "eval_aggregate/solve_rate"))
for i in range((len(config["eval_levels"]))):
frames, episode_length = stats["eval_animation"][0][:, i], stats["eval_animation"][1][i]
frames = np.array(frames[:episode_length])
log_dict.update(
{
f"media/eval_video_{config['eval_levels'][i]}": wandb.Video(
frames.astype(np.uint8), fps=15, caption=f"(len {episode_length})"
)
}
)
for j in range(5):
frames, episode_length, cum_rewards = (
stats["top_learnable_animation"][0][:, j],
stats["top_learnable_animation"][1][j],
stats["top_learnable_animation"][2][:, j],
) # num attempts
rr = "|".join([f"{r:<.2f}" for r in cum_rewards])
frames = np.array(frames[:episode_length])
log_dict.update(
{
f"media/tl_animation_{j}": wandb.Video(
frames.astype(np.uint8), fps=15, caption=f"(len {episode_length})\n{rr}"
)
}
)
stats.update(log_dict)
wandb.log(stats, step=stats["update_count"])
checkpoint_steps = config["checkpoint_save_freq"]
assert config["num_updates"] % config["eval_freq"] == 0, "num_updates must be divisible by eval_freq"
for eval_step in range(int(config["num_updates"] // config["eval_freq"])):
start_time = time.time()
rng, eval_rng = jax.random.split(rng)
runner_state, instances, metrics = train_and_eval_step(runner_state, eval_rng)
curr_time = time.time()
metrics.update(log_buffer(*instances, metrics["update_count"]))
metrics["time_delta"] = curr_time - start_time
metrics["steps_per_section"] = (config["eval_freq"] * config["num_steps"] * config["num_train_envs"]) / metrics[
"time_delta"
]
log_eval(metrics)
if ((eval_step + 1) * config["eval_freq"]) % checkpoint_steps == 0:
if config["save_path"] is not None:
steps = int(metrics["update_count"]) * int(config["num_train_envs"]) * int(config["num_steps"])
# save_params_to_wandb(runner_state[0].params, steps, config)
save_model_to_wandb(runner_state[0], steps, config)
if config["save_path"] is not None:
# save_params_to_wandb(runner_state[0].params, config["total_timesteps"], config)
save_model_to_wandb(runner_state[0], config["total_timesteps"], config)
if __name__ == "__main__":
# with jax.disable_jit():
# main()
main()
|