import gradio as gr import whisper # duplicate this space to run on higher CPU power for the large (very precise and multi-lingual) model to work best def speech_to_text(uploaded, model_size): model = whisper.load_model(model_size) source = uploaded if uploaded is not None else '' result = model.transcribe(source) return f'{result["text"]}' gr.Interface( title="", thumbnail="", css=""" footer {visibility: xhidden} .gr-prose p{text-align: center;} .gr-button {background: black;color: white} """, description="", fn=speech_to_text, inputs=[ gr.Audio(source="upload", type="filepath", label="Upload Audio"), gr.Dropdown(label="Select model size",value="large",choices=["tiny", "base", "small", "medium", "large"])], outputs="text").launch(debug = True, share = True)