File size: 6,055 Bytes
047c786
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
# https://github.com/comfyanonymous/ComfyUI/blob/master/nodes.py 

import torch
from torch import einsum
import torch.nn.functional as F
import math

from einops import rearrange, repeat
import os
from ldm_patched.ldm.modules.attention import optimized_attention, _ATTN_PRECISION
import ldm_patched.modules.samplers

# from ldm_patched.modules/ldm/modules/attention.py
# but modified to return attention scores as well as output
def attention_basic_with_sim(q, k, v, heads, mask=None):
    b, _, dim_head = q.shape
    dim_head //= heads
    scale = dim_head ** -0.5

    h = heads
    q, k, v = map(
        lambda t: t.unsqueeze(3)
        .reshape(b, -1, heads, dim_head)
        .permute(0, 2, 1, 3)
        .reshape(b * heads, -1, dim_head)
        .contiguous(),
        (q, k, v),
    )

    # force cast to fp32 to avoid overflowing
    if _ATTN_PRECISION =="fp32":
        sim = einsum('b i d, b j d -> b i j', q.float(), k.float()) * scale
    else:
        sim = einsum('b i d, b j d -> b i j', q, k) * scale

    del q, k

    if mask is not None:
        mask = rearrange(mask, 'b ... -> b (...)')
        max_neg_value = -torch.finfo(sim.dtype).max
        mask = repeat(mask, 'b j -> (b h) () j', h=h)
        sim.masked_fill_(~mask, max_neg_value)

    # attention, what we cannot get enough of
    sim = sim.softmax(dim=-1)

    out = einsum('b i j, b j d -> b i d', sim.to(v.dtype), v)
    out = (
        out.unsqueeze(0)
        .reshape(b, heads, -1, dim_head)
        .permute(0, 2, 1, 3)
        .reshape(b, -1, heads * dim_head)
    )
    return (out, sim)

def create_blur_map(x0, attn, sigma=3.0, threshold=1.0):
    # reshape and GAP the attention map
    _, hw1, hw2 = attn.shape
    b, _, lh, lw = x0.shape
    attn = attn.reshape(b, -1, hw1, hw2)
    # Global Average Pool
    mask = attn.mean(1, keepdim=False).sum(1, keepdim=False) > threshold
    ratio = 2**(math.ceil(math.sqrt(lh * lw / hw1)) - 1).bit_length()
    mid_shape = [math.ceil(lh / ratio), math.ceil(lw / ratio)]

    # Reshape
    mask = (
        mask.reshape(b, *mid_shape)
        .unsqueeze(1)
        .type(attn.dtype)
    )
    # Upsample
    mask = F.interpolate(mask, (lh, lw))

    blurred = gaussian_blur_2d(x0, kernel_size=9, sigma=sigma)
    blurred = blurred * mask + x0 * (1 - mask)
    return blurred

def gaussian_blur_2d(img, kernel_size, sigma):
    ksize_half = (kernel_size - 1) * 0.5

    x = torch.linspace(-ksize_half, ksize_half, steps=kernel_size)

    pdf = torch.exp(-0.5 * (x / sigma).pow(2))

    x_kernel = pdf / pdf.sum()
    x_kernel = x_kernel.to(device=img.device, dtype=img.dtype)

    kernel2d = torch.mm(x_kernel[:, None], x_kernel[None, :])
    kernel2d = kernel2d.expand(img.shape[-3], 1, kernel2d.shape[0], kernel2d.shape[1])

    padding = [kernel_size // 2, kernel_size // 2, kernel_size // 2, kernel_size // 2]

    img = F.pad(img, padding, mode="reflect")
    img = F.conv2d(img, kernel2d, groups=img.shape[-3])
    return img

class SelfAttentionGuidance:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "model": ("MODEL",),
                             "scale": ("FLOAT", {"default": 0.5, "min": -2.0, "max": 5.0, "step": 0.1}),
                             "blur_sigma": ("FLOAT", {"default": 2.0, "min": 0.0, "max": 10.0, "step": 0.1}),
                              }}
    RETURN_TYPES = ("MODEL",)
    FUNCTION = "patch"

    CATEGORY = "_for_testing"

    def patch(self, model, scale, blur_sigma):
        m = model.clone()

        attn_scores = None

        # TODO: make this work properly with chunked batches
        #       currently, we can only save the attn from one UNet call
        def attn_and_record(q, k, v, extra_options):
            nonlocal attn_scores
            # if uncond, save the attention scores
            heads = extra_options["n_heads"]
            cond_or_uncond = extra_options["cond_or_uncond"]
            b = q.shape[0] // len(cond_or_uncond)
            if 1 in cond_or_uncond:
                uncond_index = cond_or_uncond.index(1)
                # do the entire attention operation, but save the attention scores to attn_scores
                (out, sim) = attention_basic_with_sim(q, k, v, heads=heads)
                # when using a higher batch size, I BELIEVE the result batch dimension is [uc1, ... ucn, c1, ... cn]
                n_slices = heads * b
                attn_scores = sim[n_slices * uncond_index:n_slices * (uncond_index+1)]
                return out
            else:
                return optimized_attention(q, k, v, heads=heads)

        def post_cfg_function(args):
            nonlocal attn_scores
            uncond_attn = attn_scores

            sag_scale = scale
            sag_sigma = blur_sigma
            sag_threshold = 1.0
            model = args["model"]
            uncond_pred = args["uncond_denoised"]
            uncond = args["uncond"]
            cfg_result = args["denoised"]
            sigma = args["sigma"]
            model_options = args["model_options"]
            x = args["input"]
            if min(cfg_result.shape[2:]) <= 4: #skip when too small to add padding
                return cfg_result

            # create the adversarially blurred image
            degraded = create_blur_map(uncond_pred, uncond_attn, sag_sigma, sag_threshold)
            degraded_noised = degraded + x - uncond_pred
            # call into the UNet
            (sag, _) = ldm_patched.modules.samplers.calc_cond_uncond_batch(model, uncond, None, degraded_noised, sigma, model_options)
            return cfg_result + (degraded - sag) * sag_scale

        m.set_model_sampler_post_cfg_function(post_cfg_function, disable_cfg1_optimization=True)

        # from diffusers:
        # unet.mid_block.attentions[0].transformer_blocks[0].attn1.patch
        m.set_model_attn1_replace(attn_and_record, "middle", 0, 0)

        return (m, )

NODE_CLASS_MAPPINGS = {
    "SelfAttentionGuidance": SelfAttentionGuidance,
}

NODE_DISPLAY_NAME_MAPPINGS = {
    "SelfAttentionGuidance": "Self-Attention Guidance",
}