File size: 2,485 Bytes
047c786
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
# https://github.com/comfyanonymous/ComfyUI/blob/master/nodes.py 

import os
from ldm_patched.pfn import model_loading
from ldm_patched.modules import model_management
import torch
import ldm_patched.modules.utils
import ldm_patched.utils.path_utils

class UpscaleModelLoader:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "model_name": (ldm_patched.utils.path_utils.get_filename_list("upscale_models"), ),
                             }}
    RETURN_TYPES = ("UPSCALE_MODEL",)
    FUNCTION = "load_model"

    CATEGORY = "loaders"

    def load_model(self, model_name):
        model_path = ldm_patched.utils.path_utils.get_full_path("upscale_models", model_name)
        sd = ldm_patched.modules.utils.load_torch_file(model_path, safe_load=True)
        if "module.layers.0.residual_group.blocks.0.norm1.weight" in sd:
            sd = ldm_patched.modules.utils.state_dict_prefix_replace(sd, {"module.":""})
        out = model_loading.load_state_dict(sd).eval()
        return (out, )


class ImageUpscaleWithModel:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "upscale_model": ("UPSCALE_MODEL",),
                              "image": ("IMAGE",),
                              }}
    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "upscale"

    CATEGORY = "image/upscaling"

    def upscale(self, upscale_model, image):
        device = model_management.get_torch_device()
        upscale_model.to(device)
        in_img = image.movedim(-1,-3).to(device)
        free_memory = model_management.get_free_memory(device)

        tile = 512
        overlap = 32

        oom = True
        while oom:
            try:
                steps = in_img.shape[0] * ldm_patched.modules.utils.get_tiled_scale_steps(in_img.shape[3], in_img.shape[2], tile_x=tile, tile_y=tile, overlap=overlap)
                pbar = ldm_patched.modules.utils.ProgressBar(steps)
                s = ldm_patched.modules.utils.tiled_scale(in_img, lambda a: upscale_model(a), tile_x=tile, tile_y=tile, overlap=overlap, upscale_amount=upscale_model.scale, pbar=pbar)
                oom = False
            except model_management.OOM_EXCEPTION as e:
                tile //= 2
                if tile < 128:
                    raise e

        upscale_model.cpu()
        s = torch.clamp(s.movedim(-3,-1), min=0, max=1.0)
        return (s,)

NODE_CLASS_MAPPINGS = {
    "UpscaleModelLoader": UpscaleModelLoader,
    "ImageUpscaleWithModel": ImageUpscaleWithModel
}