File size: 40,954 Bytes
047c786
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
# pylint: skip-file
import math
import re

import numpy as np
import torch
import torch.nn as nn
import torch.utils.checkpoint as checkpoint
from einops import rearrange
from einops.layers.torch import Rearrange
from torch import Tensor
from torch.nn import functional as F

from .timm.drop import DropPath
from .timm.weight_init import trunc_normal_


def img2windows(img, H_sp, W_sp):
    """
    Input: Image (B, C, H, W)
    Output: Window Partition (B', N, C)
    """
    B, C, H, W = img.shape
    img_reshape = img.view(B, C, H // H_sp, H_sp, W // W_sp, W_sp)
    img_perm = (
        img_reshape.permute(0, 2, 4, 3, 5, 1).contiguous().reshape(-1, H_sp * W_sp, C)
    )
    return img_perm


def windows2img(img_splits_hw, H_sp, W_sp, H, W):
    """
    Input: Window Partition (B', N, C)
    Output: Image (B, H, W, C)
    """
    B = int(img_splits_hw.shape[0] / (H * W / H_sp / W_sp))

    img = img_splits_hw.view(B, H // H_sp, W // W_sp, H_sp, W_sp, -1)
    img = img.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1)
    return img


class SpatialGate(nn.Module):
    """Spatial-Gate.
    Args:
        dim (int): Half of input channels.
    """

    def __init__(self, dim):
        super().__init__()
        self.norm = nn.LayerNorm(dim)
        self.conv = nn.Conv2d(
            dim, dim, kernel_size=3, stride=1, padding=1, groups=dim
        )  # DW Conv

    def forward(self, x, H, W):
        # Split
        x1, x2 = x.chunk(2, dim=-1)
        B, N, C = x.shape
        x2 = (
            self.conv(self.norm(x2).transpose(1, 2).contiguous().view(B, C // 2, H, W))
            .flatten(2)
            .transpose(-1, -2)
            .contiguous()
        )

        return x1 * x2


class SGFN(nn.Module):
    """Spatial-Gate Feed-Forward Network.
    Args:
        in_features (int): Number of input channels.
        hidden_features (int | None): Number of hidden channels. Default: None
        out_features (int | None): Number of output channels. Default: None
        act_layer (nn.Module): Activation layer. Default: nn.GELU
        drop (float): Dropout rate. Default: 0.0
    """

    def __init__(
        self,
        in_features,
        hidden_features=None,
        out_features=None,
        act_layer=nn.GELU,
        drop=0.0,
    ):
        super().__init__()
        out_features = out_features or in_features
        hidden_features = hidden_features or in_features
        self.fc1 = nn.Linear(in_features, hidden_features)
        self.act = act_layer()
        self.sg = SpatialGate(hidden_features // 2)
        self.fc2 = nn.Linear(hidden_features // 2, out_features)
        self.drop = nn.Dropout(drop)

    def forward(self, x, H, W):
        """
        Input: x: (B, H*W, C), H, W
        Output: x: (B, H*W, C)
        """
        x = self.fc1(x)
        x = self.act(x)
        x = self.drop(x)

        x = self.sg(x, H, W)
        x = self.drop(x)

        x = self.fc2(x)
        x = self.drop(x)
        return x


class DynamicPosBias(nn.Module):
    # The implementation builds on Crossformer code https://github.com/cheerss/CrossFormer/blob/main/models/crossformer.py
    """Dynamic Relative Position Bias.
    Args:
        dim (int): Number of input channels.
        num_heads (int): Number of attention heads.
        residual (bool):  If True, use residual strage to connect conv.
    """

    def __init__(self, dim, num_heads, residual):
        super().__init__()
        self.residual = residual
        self.num_heads = num_heads
        self.pos_dim = dim // 4
        self.pos_proj = nn.Linear(2, self.pos_dim)
        self.pos1 = nn.Sequential(
            nn.LayerNorm(self.pos_dim),
            nn.ReLU(inplace=True),
            nn.Linear(self.pos_dim, self.pos_dim),
        )
        self.pos2 = nn.Sequential(
            nn.LayerNorm(self.pos_dim),
            nn.ReLU(inplace=True),
            nn.Linear(self.pos_dim, self.pos_dim),
        )
        self.pos3 = nn.Sequential(
            nn.LayerNorm(self.pos_dim),
            nn.ReLU(inplace=True),
            nn.Linear(self.pos_dim, self.num_heads),
        )

    def forward(self, biases):
        if self.residual:
            pos = self.pos_proj(biases)  # 2Gh-1 * 2Gw-1, heads
            pos = pos + self.pos1(pos)
            pos = pos + self.pos2(pos)
            pos = self.pos3(pos)
        else:
            pos = self.pos3(self.pos2(self.pos1(self.pos_proj(biases))))
        return pos


class Spatial_Attention(nn.Module):
    """Spatial Window Self-Attention.
    It supports rectangle window (containing square window).
    Args:
        dim (int): Number of input channels.
        idx (int): The indentix of window. (0/1)
        split_size (tuple(int)): Height and Width of spatial window.
        dim_out (int | None): The dimension of the attention output. Default: None
        num_heads (int): Number of attention heads. Default: 6
        attn_drop (float): Dropout ratio of attention weight. Default: 0.0
        proj_drop (float): Dropout ratio of output. Default: 0.0
        qk_scale (float | None): Override default qk scale of head_dim ** -0.5 if set
        position_bias (bool): The dynamic relative position bias. Default: True
    """

    def __init__(
        self,
        dim,
        idx,
        split_size=[8, 8],
        dim_out=None,
        num_heads=6,
        attn_drop=0.0,
        proj_drop=0.0,
        qk_scale=None,
        position_bias=True,
    ):
        super().__init__()
        self.dim = dim
        self.dim_out = dim_out or dim
        self.split_size = split_size
        self.num_heads = num_heads
        self.idx = idx
        self.position_bias = position_bias

        head_dim = dim // num_heads
        self.scale = qk_scale or head_dim**-0.5

        if idx == 0:
            H_sp, W_sp = self.split_size[0], self.split_size[1]
        elif idx == 1:
            W_sp, H_sp = self.split_size[0], self.split_size[1]
        else:
            print("ERROR MODE", idx)
            exit(0)
        self.H_sp = H_sp
        self.W_sp = W_sp

        if self.position_bias:
            self.pos = DynamicPosBias(self.dim // 4, self.num_heads, residual=False)
            # generate mother-set
            position_bias_h = torch.arange(1 - self.H_sp, self.H_sp)
            position_bias_w = torch.arange(1 - self.W_sp, self.W_sp)
            biases = torch.stack(torch.meshgrid([position_bias_h, position_bias_w]))
            biases = biases.flatten(1).transpose(0, 1).contiguous().float()
            self.register_buffer("rpe_biases", biases)

            # get pair-wise relative position index for each token inside the window
            coords_h = torch.arange(self.H_sp)
            coords_w = torch.arange(self.W_sp)
            coords = torch.stack(torch.meshgrid([coords_h, coords_w]))
            coords_flatten = torch.flatten(coords, 1)
            relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :]
            relative_coords = relative_coords.permute(1, 2, 0).contiguous()
            relative_coords[:, :, 0] += self.H_sp - 1
            relative_coords[:, :, 1] += self.W_sp - 1
            relative_coords[:, :, 0] *= 2 * self.W_sp - 1
            relative_position_index = relative_coords.sum(-1)
            self.register_buffer("relative_position_index", relative_position_index)

        self.attn_drop = nn.Dropout(attn_drop)

    def im2win(self, x, H, W):
        B, N, C = x.shape
        x = x.transpose(-2, -1).contiguous().view(B, C, H, W)
        x = img2windows(x, self.H_sp, self.W_sp)
        x = (
            x.reshape(-1, self.H_sp * self.W_sp, self.num_heads, C // self.num_heads)
            .permute(0, 2, 1, 3)
            .contiguous()
        )
        return x

    def forward(self, qkv, H, W, mask=None):
        """
        Input: qkv: (B, 3*L, C), H, W, mask: (B, N, N), N is the window size
        Output: x (B, H, W, C)
        """
        q, k, v = qkv[0], qkv[1], qkv[2]

        B, L, C = q.shape
        assert L == H * W, "flatten img_tokens has wrong size"

        # partition the q,k,v, image to window
        q = self.im2win(q, H, W)
        k = self.im2win(k, H, W)
        v = self.im2win(v, H, W)

        q = q * self.scale
        attn = q @ k.transpose(-2, -1)  # B head N C @ B head C N --> B head N N

        # calculate drpe
        if self.position_bias:
            pos = self.pos(self.rpe_biases)
            # select position bias
            relative_position_bias = pos[self.relative_position_index.view(-1)].view(
                self.H_sp * self.W_sp, self.H_sp * self.W_sp, -1
            )
            relative_position_bias = relative_position_bias.permute(
                2, 0, 1
            ).contiguous()
            attn = attn + relative_position_bias.unsqueeze(0)

        N = attn.shape[3]

        # use mask for shift window
        if mask is not None:
            nW = mask.shape[0]
            attn = attn.view(B, nW, self.num_heads, N, N) + mask.unsqueeze(1).unsqueeze(
                0
            )
            attn = attn.view(-1, self.num_heads, N, N)

        attn = nn.functional.softmax(attn, dim=-1, dtype=attn.dtype)
        attn = self.attn_drop(attn)

        x = attn @ v
        x = x.transpose(1, 2).reshape(
            -1, self.H_sp * self.W_sp, C
        )  # B head N N @ B head N C

        # merge the window, window to image
        x = windows2img(x, self.H_sp, self.W_sp, H, W)  # B H' W' C

        return x


class Adaptive_Spatial_Attention(nn.Module):
    # The implementation builds on CAT code https://github.com/Zhengchen1999/CAT
    """Adaptive Spatial Self-Attention
    Args:
        dim (int): Number of input channels.
        num_heads (int): Number of attention heads. Default: 6
        split_size (tuple(int)): Height and Width of spatial window.
        shift_size (tuple(int)): Shift size for spatial window.
        qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: True
        qk_scale (float | None): Override default qk scale of head_dim ** -0.5 if set.
        drop (float): Dropout rate. Default: 0.0
        attn_drop (float): Attention dropout rate. Default: 0.0
        rg_idx (int): The indentix of Residual Group (RG)
        b_idx (int): The indentix of Block in each RG
    """

    def __init__(
        self,
        dim,
        num_heads,
        reso=64,
        split_size=[8, 8],
        shift_size=[1, 2],
        qkv_bias=False,
        qk_scale=None,
        drop=0.0,
        attn_drop=0.0,
        rg_idx=0,
        b_idx=0,
    ):
        super().__init__()
        self.dim = dim
        self.num_heads = num_heads
        self.split_size = split_size
        self.shift_size = shift_size
        self.b_idx = b_idx
        self.rg_idx = rg_idx
        self.patches_resolution = reso
        self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)

        assert (
            0 <= self.shift_size[0] < self.split_size[0]
        ), "shift_size must in 0-split_size0"
        assert (
            0 <= self.shift_size[1] < self.split_size[1]
        ), "shift_size must in 0-split_size1"

        self.branch_num = 2

        self.proj = nn.Linear(dim, dim)
        self.proj_drop = nn.Dropout(drop)

        self.attns = nn.ModuleList(
            [
                Spatial_Attention(
                    dim // 2,
                    idx=i,
                    split_size=split_size,
                    num_heads=num_heads // 2,
                    dim_out=dim // 2,
                    qk_scale=qk_scale,
                    attn_drop=attn_drop,
                    proj_drop=drop,
                    position_bias=True,
                )
                for i in range(self.branch_num)
            ]
        )

        if (self.rg_idx % 2 == 0 and self.b_idx > 0 and (self.b_idx - 2) % 4 == 0) or (
            self.rg_idx % 2 != 0 and self.b_idx % 4 == 0
        ):
            attn_mask = self.calculate_mask(
                self.patches_resolution, self.patches_resolution
            )
            self.register_buffer("attn_mask_0", attn_mask[0])
            self.register_buffer("attn_mask_1", attn_mask[1])
        else:
            attn_mask = None
            self.register_buffer("attn_mask_0", None)
            self.register_buffer("attn_mask_1", None)

        self.dwconv = nn.Sequential(
            nn.Conv2d(dim, dim, kernel_size=3, stride=1, padding=1, groups=dim),
            nn.BatchNorm2d(dim),
            nn.GELU(),
        )
        self.channel_interaction = nn.Sequential(
            nn.AdaptiveAvgPool2d(1),
            nn.Conv2d(dim, dim // 8, kernel_size=1),
            nn.BatchNorm2d(dim // 8),
            nn.GELU(),
            nn.Conv2d(dim // 8, dim, kernel_size=1),
        )
        self.spatial_interaction = nn.Sequential(
            nn.Conv2d(dim, dim // 16, kernel_size=1),
            nn.BatchNorm2d(dim // 16),
            nn.GELU(),
            nn.Conv2d(dim // 16, 1, kernel_size=1),
        )

    def calculate_mask(self, H, W):
        # The implementation builds on Swin Transformer code https://github.com/microsoft/Swin-Transformer/blob/main/models/swin_transformer.py
        # calculate attention mask for shift window
        img_mask_0 = torch.zeros((1, H, W, 1))  # 1 H W 1 idx=0
        img_mask_1 = torch.zeros((1, H, W, 1))  # 1 H W 1 idx=1
        h_slices_0 = (
            slice(0, -self.split_size[0]),
            slice(-self.split_size[0], -self.shift_size[0]),
            slice(-self.shift_size[0], None),
        )
        w_slices_0 = (
            slice(0, -self.split_size[1]),
            slice(-self.split_size[1], -self.shift_size[1]),
            slice(-self.shift_size[1], None),
        )

        h_slices_1 = (
            slice(0, -self.split_size[1]),
            slice(-self.split_size[1], -self.shift_size[1]),
            slice(-self.shift_size[1], None),
        )
        w_slices_1 = (
            slice(0, -self.split_size[0]),
            slice(-self.split_size[0], -self.shift_size[0]),
            slice(-self.shift_size[0], None),
        )
        cnt = 0
        for h in h_slices_0:
            for w in w_slices_0:
                img_mask_0[:, h, w, :] = cnt
                cnt += 1
        cnt = 0
        for h in h_slices_1:
            for w in w_slices_1:
                img_mask_1[:, h, w, :] = cnt
                cnt += 1

        # calculate mask for window-0
        img_mask_0 = img_mask_0.view(
            1,
            H // self.split_size[0],
            self.split_size[0],
            W // self.split_size[1],
            self.split_size[1],
            1,
        )
        img_mask_0 = (
            img_mask_0.permute(0, 1, 3, 2, 4, 5)
            .contiguous()
            .view(-1, self.split_size[0], self.split_size[1], 1)
        )  # nW, sw[0], sw[1], 1
        mask_windows_0 = img_mask_0.view(-1, self.split_size[0] * self.split_size[1])
        attn_mask_0 = mask_windows_0.unsqueeze(1) - mask_windows_0.unsqueeze(2)
        attn_mask_0 = attn_mask_0.masked_fill(
            attn_mask_0 != 0, float(-100.0)
        ).masked_fill(attn_mask_0 == 0, float(0.0))

        # calculate mask for window-1
        img_mask_1 = img_mask_1.view(
            1,
            H // self.split_size[1],
            self.split_size[1],
            W // self.split_size[0],
            self.split_size[0],
            1,
        )
        img_mask_1 = (
            img_mask_1.permute(0, 1, 3, 2, 4, 5)
            .contiguous()
            .view(-1, self.split_size[1], self.split_size[0], 1)
        )  # nW, sw[1], sw[0], 1
        mask_windows_1 = img_mask_1.view(-1, self.split_size[1] * self.split_size[0])
        attn_mask_1 = mask_windows_1.unsqueeze(1) - mask_windows_1.unsqueeze(2)
        attn_mask_1 = attn_mask_1.masked_fill(
            attn_mask_1 != 0, float(-100.0)
        ).masked_fill(attn_mask_1 == 0, float(0.0))

        return attn_mask_0, attn_mask_1

    def forward(self, x, H, W):
        """
        Input: x: (B, H*W, C), H, W
        Output: x: (B, H*W, C)
        """
        B, L, C = x.shape
        assert L == H * W, "flatten img_tokens has wrong size"

        qkv = self.qkv(x).reshape(B, -1, 3, C).permute(2, 0, 1, 3)  # 3, B, HW, C
        # V without partition
        v = qkv[2].transpose(-2, -1).contiguous().view(B, C, H, W)

        # image padding
        max_split_size = max(self.split_size[0], self.split_size[1])
        pad_l = pad_t = 0
        pad_r = (max_split_size - W % max_split_size) % max_split_size
        pad_b = (max_split_size - H % max_split_size) % max_split_size

        qkv = qkv.reshape(3 * B, H, W, C).permute(0, 3, 1, 2)  # 3B C H W
        qkv = (
            F.pad(qkv, (pad_l, pad_r, pad_t, pad_b))
            .reshape(3, B, C, -1)
            .transpose(-2, -1)
        )  # l r t b
        _H = pad_b + H
        _W = pad_r + W
        _L = _H * _W

        # window-0 and window-1 on split channels [C/2, C/2]; for square windows (e.g., 8x8), window-0 and window-1 can be merged
        # shift in block: (0, 4, 8, ...), (2, 6, 10, ...), (0, 4, 8, ...), (2, 6, 10, ...), ...
        if (self.rg_idx % 2 == 0 and self.b_idx > 0 and (self.b_idx - 2) % 4 == 0) or (
            self.rg_idx % 2 != 0 and self.b_idx % 4 == 0
        ):
            qkv = qkv.view(3, B, _H, _W, C)
            qkv_0 = torch.roll(
                qkv[:, :, :, :, : C // 2],
                shifts=(-self.shift_size[0], -self.shift_size[1]),
                dims=(2, 3),
            )
            qkv_0 = qkv_0.view(3, B, _L, C // 2)
            qkv_1 = torch.roll(
                qkv[:, :, :, :, C // 2 :],
                shifts=(-self.shift_size[1], -self.shift_size[0]),
                dims=(2, 3),
            )
            qkv_1 = qkv_1.view(3, B, _L, C // 2)

            if self.patches_resolution != _H or self.patches_resolution != _W:
                mask_tmp = self.calculate_mask(_H, _W)
                x1_shift = self.attns[0](qkv_0, _H, _W, mask=mask_tmp[0].to(x.device))
                x2_shift = self.attns[1](qkv_1, _H, _W, mask=mask_tmp[1].to(x.device))
            else:
                x1_shift = self.attns[0](qkv_0, _H, _W, mask=self.attn_mask_0)
                x2_shift = self.attns[1](qkv_1, _H, _W, mask=self.attn_mask_1)

            x1 = torch.roll(
                x1_shift, shifts=(self.shift_size[0], self.shift_size[1]), dims=(1, 2)
            )
            x2 = torch.roll(
                x2_shift, shifts=(self.shift_size[1], self.shift_size[0]), dims=(1, 2)
            )
            x1 = x1[:, :H, :W, :].reshape(B, L, C // 2)
            x2 = x2[:, :H, :W, :].reshape(B, L, C // 2)
            # attention output
            attened_x = torch.cat([x1, x2], dim=2)

        else:
            x1 = self.attns[0](qkv[:, :, :, : C // 2], _H, _W)[:, :H, :W, :].reshape(
                B, L, C // 2
            )
            x2 = self.attns[1](qkv[:, :, :, C // 2 :], _H, _W)[:, :H, :W, :].reshape(
                B, L, C // 2
            )
            # attention output
            attened_x = torch.cat([x1, x2], dim=2)

        # convolution output
        conv_x = self.dwconv(v)

        # Adaptive Interaction Module (AIM)
        # C-Map (before sigmoid)
        channel_map = (
            self.channel_interaction(conv_x)
            .permute(0, 2, 3, 1)
            .contiguous()
            .view(B, 1, C)
        )
        # S-Map (before sigmoid)
        attention_reshape = attened_x.transpose(-2, -1).contiguous().view(B, C, H, W)
        spatial_map = self.spatial_interaction(attention_reshape)

        # C-I
        attened_x = attened_x * torch.sigmoid(channel_map)
        # S-I
        conv_x = torch.sigmoid(spatial_map) * conv_x
        conv_x = conv_x.permute(0, 2, 3, 1).contiguous().view(B, L, C)

        x = attened_x + conv_x

        x = self.proj(x)
        x = self.proj_drop(x)

        return x


class Adaptive_Channel_Attention(nn.Module):
    # The implementation builds on XCiT code https://github.com/facebookresearch/xcit
    """Adaptive Channel Self-Attention
    Args:
        dim (int): Number of input channels.
        num_heads (int): Number of attention heads. Default: 6
        qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: True
        qk_scale (float | None): Override default qk scale of head_dim ** -0.5 if set.
        attn_drop (float): Attention dropout rate. Default: 0.0
        drop_path (float): Stochastic depth rate. Default: 0.0
    """

    def __init__(
        self,
        dim,
        num_heads=8,
        qkv_bias=False,
        qk_scale=None,
        attn_drop=0.0,
        proj_drop=0.0,
    ):
        super().__init__()
        self.num_heads = num_heads
        self.temperature = nn.Parameter(torch.ones(num_heads, 1, 1))

        self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
        self.attn_drop = nn.Dropout(attn_drop)
        self.proj = nn.Linear(dim, dim)
        self.proj_drop = nn.Dropout(proj_drop)

        self.dwconv = nn.Sequential(
            nn.Conv2d(dim, dim, kernel_size=3, stride=1, padding=1, groups=dim),
            nn.BatchNorm2d(dim),
            nn.GELU(),
        )
        self.channel_interaction = nn.Sequential(
            nn.AdaptiveAvgPool2d(1),
            nn.Conv2d(dim, dim // 8, kernel_size=1),
            nn.BatchNorm2d(dim // 8),
            nn.GELU(),
            nn.Conv2d(dim // 8, dim, kernel_size=1),
        )
        self.spatial_interaction = nn.Sequential(
            nn.Conv2d(dim, dim // 16, kernel_size=1),
            nn.BatchNorm2d(dim // 16),
            nn.GELU(),
            nn.Conv2d(dim // 16, 1, kernel_size=1),
        )

    def forward(self, x, H, W):
        """
        Input: x: (B, H*W, C), H, W
        Output: x: (B, H*W, C)
        """
        B, N, C = x.shape
        qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads)
        qkv = qkv.permute(2, 0, 3, 1, 4)
        q, k, v = qkv[0], qkv[1], qkv[2]

        q = q.transpose(-2, -1)
        k = k.transpose(-2, -1)
        v = v.transpose(-2, -1)

        v_ = v.reshape(B, C, N).contiguous().view(B, C, H, W)

        q = torch.nn.functional.normalize(q, dim=-1)
        k = torch.nn.functional.normalize(k, dim=-1)

        attn = (q @ k.transpose(-2, -1)) * self.temperature
        attn = attn.softmax(dim=-1)
        attn = self.attn_drop(attn)

        # attention output
        attened_x = (attn @ v).permute(0, 3, 1, 2).reshape(B, N, C)

        # convolution output
        conv_x = self.dwconv(v_)

        # Adaptive Interaction Module (AIM)
        # C-Map (before sigmoid)
        attention_reshape = attened_x.transpose(-2, -1).contiguous().view(B, C, H, W)
        channel_map = self.channel_interaction(attention_reshape)
        # S-Map (before sigmoid)
        spatial_map = (
            self.spatial_interaction(conv_x)
            .permute(0, 2, 3, 1)
            .contiguous()
            .view(B, N, 1)
        )

        # S-I
        attened_x = attened_x * torch.sigmoid(spatial_map)
        # C-I
        conv_x = conv_x * torch.sigmoid(channel_map)
        conv_x = conv_x.permute(0, 2, 3, 1).contiguous().view(B, N, C)

        x = attened_x + conv_x

        x = self.proj(x)
        x = self.proj_drop(x)

        return x


class DATB(nn.Module):
    def __init__(
        self,
        dim,
        num_heads,
        reso=64,
        split_size=[2, 4],
        shift_size=[1, 2],
        expansion_factor=4.0,
        qkv_bias=False,
        qk_scale=None,
        drop=0.0,
        attn_drop=0.0,
        drop_path=0.0,
        act_layer=nn.GELU,
        norm_layer=nn.LayerNorm,
        rg_idx=0,
        b_idx=0,
    ):
        super().__init__()

        self.norm1 = norm_layer(dim)

        if b_idx % 2 == 0:
            # DSTB
            self.attn = Adaptive_Spatial_Attention(
                dim,
                num_heads=num_heads,
                reso=reso,
                split_size=split_size,
                shift_size=shift_size,
                qkv_bias=qkv_bias,
                qk_scale=qk_scale,
                drop=drop,
                attn_drop=attn_drop,
                rg_idx=rg_idx,
                b_idx=b_idx,
            )
        else:
            # DCTB
            self.attn = Adaptive_Channel_Attention(
                dim,
                num_heads=num_heads,
                qkv_bias=qkv_bias,
                qk_scale=qk_scale,
                attn_drop=attn_drop,
                proj_drop=drop,
            )
        self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()

        ffn_hidden_dim = int(dim * expansion_factor)
        self.ffn = SGFN(
            in_features=dim,
            hidden_features=ffn_hidden_dim,
            out_features=dim,
            act_layer=act_layer,
        )
        self.norm2 = norm_layer(dim)

    def forward(self, x, x_size):
        """
        Input: x: (B, H*W, C), x_size: (H, W)
        Output: x: (B, H*W, C)
        """
        H, W = x_size
        x = x + self.drop_path(self.attn(self.norm1(x), H, W))
        x = x + self.drop_path(self.ffn(self.norm2(x), H, W))

        return x


class ResidualGroup(nn.Module):
    """ResidualGroup
    Args:
        dim (int): Number of input channels.
        reso (int): Input resolution.
        num_heads (int): Number of attention heads.
        split_size (tuple(int)): Height and Width of spatial window.
        expansion_factor (float): Ratio of ffn hidden dim to embedding dim.
        qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: True
        qk_scale (float | None): Override default qk scale of head_dim ** -0.5 if set. Default: None
        drop (float): Dropout rate. Default: 0
        attn_drop(float): Attention dropout rate. Default: 0
        drop_paths (float | None): Stochastic depth rate.
        act_layer (nn.Module): Activation layer. Default: nn.GELU
        norm_layer (nn.Module): Normalization layer. Default: nn.LayerNorm
        depth (int): Number of dual aggregation Transformer blocks in residual group.
        use_chk (bool): Whether to use checkpointing to save memory.
        resi_connection: The convolutional block before residual connection. '1conv'/'3conv'
    """

    def __init__(
        self,
        dim,
        reso,
        num_heads,
        split_size=[2, 4],
        expansion_factor=4.0,
        qkv_bias=False,
        qk_scale=None,
        drop=0.0,
        attn_drop=0.0,
        drop_paths=None,
        act_layer=nn.GELU,
        norm_layer=nn.LayerNorm,
        depth=2,
        use_chk=False,
        resi_connection="1conv",
        rg_idx=0,
    ):
        super().__init__()
        self.use_chk = use_chk
        self.reso = reso

        self.blocks = nn.ModuleList(
            [
                DATB(
                    dim=dim,
                    num_heads=num_heads,
                    reso=reso,
                    split_size=split_size,
                    shift_size=[split_size[0] // 2, split_size[1] // 2],
                    expansion_factor=expansion_factor,
                    qkv_bias=qkv_bias,
                    qk_scale=qk_scale,
                    drop=drop,
                    attn_drop=attn_drop,
                    drop_path=drop_paths[i],
                    act_layer=act_layer,
                    norm_layer=norm_layer,
                    rg_idx=rg_idx,
                    b_idx=i,
                )
                for i in range(depth)
            ]
        )

        if resi_connection == "1conv":
            self.conv = nn.Conv2d(dim, dim, 3, 1, 1)
        elif resi_connection == "3conv":
            self.conv = nn.Sequential(
                nn.Conv2d(dim, dim // 4, 3, 1, 1),
                nn.LeakyReLU(negative_slope=0.2, inplace=True),
                nn.Conv2d(dim // 4, dim // 4, 1, 1, 0),
                nn.LeakyReLU(negative_slope=0.2, inplace=True),
                nn.Conv2d(dim // 4, dim, 3, 1, 1),
            )

    def forward(self, x, x_size):
        """
        Input: x: (B, H*W, C), x_size: (H, W)
        Output: x: (B, H*W, C)
        """
        H, W = x_size
        res = x
        for blk in self.blocks:
            if self.use_chk:
                x = checkpoint.checkpoint(blk, x, x_size)
            else:
                x = blk(x, x_size)
        x = rearrange(x, "b (h w) c -> b c h w", h=H, w=W)
        x = self.conv(x)
        x = rearrange(x, "b c h w -> b (h w) c")
        x = res + x

        return x


class Upsample(nn.Sequential):
    """Upsample module.
    Args:
        scale (int): Scale factor. Supported scales: 2^n and 3.
        num_feat (int): Channel number of intermediate features.
    """

    def __init__(self, scale, num_feat):
        m = []
        if (scale & (scale - 1)) == 0:  # scale = 2^n
            for _ in range(int(math.log(scale, 2))):
                m.append(nn.Conv2d(num_feat, 4 * num_feat, 3, 1, 1))
                m.append(nn.PixelShuffle(2))
        elif scale == 3:
            m.append(nn.Conv2d(num_feat, 9 * num_feat, 3, 1, 1))
            m.append(nn.PixelShuffle(3))
        else:
            raise ValueError(
                f"scale {scale} is not supported. " "Supported scales: 2^n and 3."
            )
        super(Upsample, self).__init__(*m)


class UpsampleOneStep(nn.Sequential):
    """UpsampleOneStep module (the difference with Upsample is that it always only has 1conv + 1pixelshuffle)
       Used in lightweight SR to save parameters.

    Args:
        scale (int): Scale factor. Supported scales: 2^n and 3.
        num_feat (int): Channel number of intermediate features.

    """

    def __init__(self, scale, num_feat, num_out_ch, input_resolution=None):
        self.num_feat = num_feat
        self.input_resolution = input_resolution
        m = []
        m.append(nn.Conv2d(num_feat, (scale**2) * num_out_ch, 3, 1, 1))
        m.append(nn.PixelShuffle(scale))
        super(UpsampleOneStep, self).__init__(*m)

    def flops(self):
        h, w = self.input_resolution
        flops = h * w * self.num_feat * 3 * 9
        return flops


class DAT(nn.Module):
    """Dual Aggregation Transformer
    Args:
        img_size (int): Input image size. Default: 64
        in_chans (int): Number of input image channels. Default: 3
        embed_dim (int): Patch embedding dimension. Default: 180
        depths (tuple(int)): Depth of each residual group (number of DATB in each RG).
        split_size (tuple(int)): Height and Width of spatial window.
        num_heads (tuple(int)): Number of attention heads in different residual groups.
        expansion_factor (float): Ratio of ffn hidden dim to embedding dim. Default: 4
        qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: True
        qk_scale (float | None): Override default qk scale of head_dim ** -0.5 if set. Default: None
        drop_rate (float): Dropout rate. Default: 0
        attn_drop_rate (float): Attention dropout rate. Default: 0
        drop_path_rate (float): Stochastic depth rate. Default: 0.1
        act_layer (nn.Module): Activation layer. Default: nn.GELU
        norm_layer (nn.Module): Normalization layer. Default: nn.LayerNorm
        use_chk (bool): Whether to use checkpointing to save memory.
        upscale: Upscale factor. 2/3/4 for image SR
        img_range: Image range. 1. or 255.
        resi_connection: The convolutional block before residual connection. '1conv'/'3conv'
    """

    def __init__(self, state_dict):
        super().__init__()

        # defaults
        img_size = 64
        in_chans = 3
        embed_dim = 180
        split_size = [2, 4]
        depth = [2, 2, 2, 2]
        num_heads = [2, 2, 2, 2]
        expansion_factor = 4.0
        qkv_bias = True
        qk_scale = None
        drop_rate = 0.0
        attn_drop_rate = 0.0
        drop_path_rate = 0.1
        act_layer = nn.GELU
        norm_layer = nn.LayerNorm
        use_chk = False
        upscale = 2
        img_range = 1.0
        resi_connection = "1conv"
        upsampler = "pixelshuffle"

        self.model_arch = "DAT"
        self.sub_type = "SR"
        self.state = state_dict

        state_keys = state_dict.keys()
        if "conv_before_upsample.0.weight" in state_keys:
            if "conv_up1.weight" in state_keys:
                upsampler = "nearest+conv"
            else:
                upsampler = "pixelshuffle"
                supports_fp16 = False
        elif "upsample.0.weight" in state_keys:
            upsampler = "pixelshuffledirect"
        else:
            upsampler = ""

        num_feat = (
            state_dict.get("conv_before_upsample.0.weight", None).shape[1]
            if state_dict.get("conv_before_upsample.weight", None)
            else 64
        )

        num_in_ch = state_dict["conv_first.weight"].shape[1]
        in_chans = num_in_ch
        if "conv_last.weight" in state_keys:
            num_out_ch = state_dict["conv_last.weight"].shape[0]
        else:
            num_out_ch = num_in_ch

        upscale = 1
        if upsampler == "nearest+conv":
            upsample_keys = [
                x for x in state_keys if "conv_up" in x and "bias" not in x
            ]

            for upsample_key in upsample_keys:
                upscale *= 2
        elif upsampler == "pixelshuffle":
            upsample_keys = [
                x
                for x in state_keys
                if "upsample" in x and "conv" not in x and "bias" not in x
            ]
            for upsample_key in upsample_keys:
                shape = state_dict[upsample_key].shape[0]
                upscale *= math.sqrt(shape // num_feat)
            upscale = int(upscale)
        elif upsampler == "pixelshuffledirect":
            upscale = int(
                math.sqrt(state_dict["upsample.0.bias"].shape[0] // num_out_ch)
            )

        max_layer_num = 0
        max_block_num = 0
        for key in state_keys:
            result = re.match(r"layers.(\d*).blocks.(\d*).norm1.weight", key)
            if result:
                layer_num, block_num = result.groups()
                max_layer_num = max(max_layer_num, int(layer_num))
                max_block_num = max(max_block_num, int(block_num))

        depth = [max_block_num + 1 for _ in range(max_layer_num + 1)]

        if "layers.0.blocks.1.attn.temperature" in state_keys:
            num_heads_num = state_dict["layers.0.blocks.1.attn.temperature"].shape[0]
            num_heads = [num_heads_num for _ in range(max_layer_num + 1)]
        else:
            num_heads = depth

        embed_dim = state_dict["conv_first.weight"].shape[0]
        expansion_factor = float(
            state_dict["layers.0.blocks.0.ffn.fc1.weight"].shape[0] / embed_dim
        )

        # TODO: could actually count the layers, but this should do
        if "layers.0.conv.4.weight" in state_keys:
            resi_connection = "3conv"
        else:
            resi_connection = "1conv"

        if "layers.0.blocks.2.attn.attn_mask_0" in state_keys:
            attn_mask_0_x, attn_mask_0_y, attn_mask_0_z = state_dict[
                "layers.0.blocks.2.attn.attn_mask_0"
            ].shape

            img_size = int(math.sqrt(attn_mask_0_x * attn_mask_0_y))

        if "layers.0.blocks.0.attn.attns.0.rpe_biases" in state_keys:
            split_sizes = (
                state_dict["layers.0.blocks.0.attn.attns.0.rpe_biases"][-1] + 1
            )
            split_size = [int(x) for x in split_sizes]

        self.in_nc = num_in_ch
        self.out_nc = num_out_ch
        self.num_feat = num_feat
        self.embed_dim = embed_dim
        self.num_heads = num_heads
        self.depth = depth
        self.scale = upscale
        self.upsampler = upsampler
        self.img_size = img_size
        self.img_range = img_range
        self.expansion_factor = expansion_factor
        self.resi_connection = resi_connection
        self.split_size = split_size

        self.supports_fp16 = False  # Too much weirdness to support this at the moment
        self.supports_bfp16 = True
        self.min_size_restriction = 16

        num_in_ch = in_chans
        num_out_ch = in_chans
        num_feat = 64
        self.img_range = img_range
        if in_chans == 3:
            rgb_mean = (0.4488, 0.4371, 0.4040)
            self.mean = torch.Tensor(rgb_mean).view(1, 3, 1, 1)
        else:
            self.mean = torch.zeros(1, 1, 1, 1)
        self.upscale = upscale
        self.upsampler = upsampler

        # ------------------------- 1, Shallow Feature Extraction ------------------------- #
        self.conv_first = nn.Conv2d(num_in_ch, embed_dim, 3, 1, 1)

        # ------------------------- 2, Deep Feature Extraction ------------------------- #
        self.num_layers = len(depth)
        self.use_chk = use_chk
        self.num_features = (
            self.embed_dim
        ) = embed_dim  # num_features for consistency with other models
        heads = num_heads

        self.before_RG = nn.Sequential(
            Rearrange("b c h w -> b (h w) c"), nn.LayerNorm(embed_dim)
        )

        curr_dim = embed_dim
        dpr = [
            x.item() for x in torch.linspace(0, drop_path_rate, np.sum(depth))
        ]  # stochastic depth decay rule

        self.layers = nn.ModuleList()
        for i in range(self.num_layers):
            layer = ResidualGroup(
                dim=embed_dim,
                num_heads=heads[i],
                reso=img_size,
                split_size=split_size,
                expansion_factor=expansion_factor,
                qkv_bias=qkv_bias,
                qk_scale=qk_scale,
                drop=drop_rate,
                attn_drop=attn_drop_rate,
                drop_paths=dpr[sum(depth[:i]) : sum(depth[: i + 1])],
                act_layer=act_layer,
                norm_layer=norm_layer,
                depth=depth[i],
                use_chk=use_chk,
                resi_connection=resi_connection,
                rg_idx=i,
            )
            self.layers.append(layer)

        self.norm = norm_layer(curr_dim)
        # build the last conv layer in deep feature extraction
        if resi_connection == "1conv":
            self.conv_after_body = nn.Conv2d(embed_dim, embed_dim, 3, 1, 1)
        elif resi_connection == "3conv":
            # to save parameters and memory
            self.conv_after_body = nn.Sequential(
                nn.Conv2d(embed_dim, embed_dim // 4, 3, 1, 1),
                nn.LeakyReLU(negative_slope=0.2, inplace=True),
                nn.Conv2d(embed_dim // 4, embed_dim // 4, 1, 1, 0),
                nn.LeakyReLU(negative_slope=0.2, inplace=True),
                nn.Conv2d(embed_dim // 4, embed_dim, 3, 1, 1),
            )

        # ------------------------- 3, Reconstruction ------------------------- #
        if self.upsampler == "pixelshuffle":
            # for classical SR
            self.conv_before_upsample = nn.Sequential(
                nn.Conv2d(embed_dim, num_feat, 3, 1, 1), nn.LeakyReLU(inplace=True)
            )
            self.upsample = Upsample(upscale, num_feat)
            self.conv_last = nn.Conv2d(num_feat, num_out_ch, 3, 1, 1)
        elif self.upsampler == "pixelshuffledirect":
            # for lightweight SR (to save parameters)
            self.upsample = UpsampleOneStep(
                upscale, embed_dim, num_out_ch, (img_size, img_size)
            )

        self.apply(self._init_weights)
        self.load_state_dict(state_dict, strict=True)

    def _init_weights(self, m):
        if isinstance(m, nn.Linear):
            trunc_normal_(m.weight, std=0.02)
            if isinstance(m, nn.Linear) and m.bias is not None:
                nn.init.constant_(m.bias, 0)
        elif isinstance(
            m, (nn.LayerNorm, nn.BatchNorm2d, nn.GroupNorm, nn.InstanceNorm2d)
        ):
            nn.init.constant_(m.bias, 0)
            nn.init.constant_(m.weight, 1.0)

    def forward_features(self, x):
        _, _, H, W = x.shape
        x_size = [H, W]
        x = self.before_RG(x)
        for layer in self.layers:
            x = layer(x, x_size)
        x = self.norm(x)
        x = rearrange(x, "b (h w) c -> b c h w", h=H, w=W)

        return x

    def forward(self, x):
        """
        Input: x: (B, C, H, W)
        """
        self.mean = self.mean.type_as(x)
        x = (x - self.mean) * self.img_range

        if self.upsampler == "pixelshuffle":
            # for image SR
            x = self.conv_first(x)
            x = self.conv_after_body(self.forward_features(x)) + x
            x = self.conv_before_upsample(x)
            x = self.conv_last(self.upsample(x))
        elif self.upsampler == "pixelshuffledirect":
            # for lightweight SR
            x = self.conv_first(x)
            x = self.conv_after_body(self.forward_features(x)) + x
            x = self.upsample(x)

        x = x / self.img_range + self.mean
        return x