Spaces:
Runtime error
Runtime error
File size: 9,885 Bytes
047c786 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 |
#taken from https://github.com/TencentARC/T2I-Adapter
import torch
import torch.nn as nn
from collections import OrderedDict
def conv_nd(dims, *args, **kwargs):
"""
Create a 1D, 2D, or 3D convolution module.
"""
if dims == 1:
return nn.Conv1d(*args, **kwargs)
elif dims == 2:
return nn.Conv2d(*args, **kwargs)
elif dims == 3:
return nn.Conv3d(*args, **kwargs)
raise ValueError(f"unsupported dimensions: {dims}")
def avg_pool_nd(dims, *args, **kwargs):
"""
Create a 1D, 2D, or 3D average pooling module.
"""
if dims == 1:
return nn.AvgPool1d(*args, **kwargs)
elif dims == 2:
return nn.AvgPool2d(*args, **kwargs)
elif dims == 3:
return nn.AvgPool3d(*args, **kwargs)
raise ValueError(f"unsupported dimensions: {dims}")
class Downsample(nn.Module):
"""
A downsampling layer with an optional convolution.
:param channels: channels in the inputs and outputs.
:param use_conv: a bool determining if a convolution is applied.
:param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
downsampling occurs in the inner-two dimensions.
"""
def __init__(self, channels, use_conv, dims=2, out_channels=None, padding=1):
super().__init__()
self.channels = channels
self.out_channels = out_channels or channels
self.use_conv = use_conv
self.dims = dims
stride = 2 if dims != 3 else (1, 2, 2)
if use_conv:
self.op = conv_nd(
dims, self.channels, self.out_channels, 3, stride=stride, padding=padding
)
else:
assert self.channels == self.out_channels
self.op = avg_pool_nd(dims, kernel_size=stride, stride=stride)
def forward(self, x):
assert x.shape[1] == self.channels
if not self.use_conv:
padding = [x.shape[2] % 2, x.shape[3] % 2]
self.op.padding = padding
x = self.op(x)
return x
class ResnetBlock(nn.Module):
def __init__(self, in_c, out_c, down, ksize=3, sk=False, use_conv=True):
super().__init__()
ps = ksize // 2
if in_c != out_c or sk == False:
self.in_conv = nn.Conv2d(in_c, out_c, ksize, 1, ps)
else:
# print('n_in')
self.in_conv = None
self.block1 = nn.Conv2d(out_c, out_c, 3, 1, 1)
self.act = nn.ReLU()
self.block2 = nn.Conv2d(out_c, out_c, ksize, 1, ps)
if sk == False:
self.skep = nn.Conv2d(in_c, out_c, ksize, 1, ps)
else:
self.skep = None
self.down = down
if self.down == True:
self.down_opt = Downsample(in_c, use_conv=use_conv)
def forward(self, x):
if self.down == True:
x = self.down_opt(x)
if self.in_conv is not None: # edit
x = self.in_conv(x)
h = self.block1(x)
h = self.act(h)
h = self.block2(h)
if self.skep is not None:
return h + self.skep(x)
else:
return h + x
class Adapter(nn.Module):
def __init__(self, channels=[320, 640, 1280, 1280], nums_rb=3, cin=64, ksize=3, sk=False, use_conv=True, xl=True):
super(Adapter, self).__init__()
self.unshuffle_amount = 8
resblock_no_downsample = []
resblock_downsample = [3, 2, 1]
self.xl = xl
if self.xl:
self.unshuffle_amount = 16
resblock_no_downsample = [1]
resblock_downsample = [2]
self.input_channels = cin // (self.unshuffle_amount * self.unshuffle_amount)
self.unshuffle = nn.PixelUnshuffle(self.unshuffle_amount)
self.channels = channels
self.nums_rb = nums_rb
self.body = []
for i in range(len(channels)):
for j in range(nums_rb):
if (i in resblock_downsample) and (j == 0):
self.body.append(
ResnetBlock(channels[i - 1], channels[i], down=True, ksize=ksize, sk=sk, use_conv=use_conv))
elif (i in resblock_no_downsample) and (j == 0):
self.body.append(
ResnetBlock(channels[i - 1], channels[i], down=False, ksize=ksize, sk=sk, use_conv=use_conv))
else:
self.body.append(
ResnetBlock(channels[i], channels[i], down=False, ksize=ksize, sk=sk, use_conv=use_conv))
self.body = nn.ModuleList(self.body)
self.conv_in = nn.Conv2d(cin, channels[0], 3, 1, 1)
def forward(self, x):
# unshuffle
x = self.unshuffle(x)
# extract features
features = []
x = self.conv_in(x)
for i in range(len(self.channels)):
for j in range(self.nums_rb):
idx = i * self.nums_rb + j
x = self.body[idx](x)
if self.xl:
features.append(None)
if i == 0:
features.append(None)
features.append(None)
if i == 2:
features.append(None)
else:
features.append(None)
features.append(None)
features.append(x)
return features
class LayerNorm(nn.LayerNorm):
"""Subclass torch's LayerNorm to handle fp16."""
def forward(self, x: torch.Tensor):
orig_type = x.dtype
ret = super().forward(x.type(torch.float32))
return ret.type(orig_type)
class QuickGELU(nn.Module):
def forward(self, x: torch.Tensor):
return x * torch.sigmoid(1.702 * x)
class ResidualAttentionBlock(nn.Module):
def __init__(self, d_model: int, n_head: int, attn_mask: torch.Tensor = None):
super().__init__()
self.attn = nn.MultiheadAttention(d_model, n_head)
self.ln_1 = LayerNorm(d_model)
self.mlp = nn.Sequential(
OrderedDict([("c_fc", nn.Linear(d_model, d_model * 4)), ("gelu", QuickGELU()),
("c_proj", nn.Linear(d_model * 4, d_model))]))
self.ln_2 = LayerNorm(d_model)
self.attn_mask = attn_mask
def attention(self, x: torch.Tensor):
self.attn_mask = self.attn_mask.to(dtype=x.dtype, device=x.device) if self.attn_mask is not None else None
return self.attn(x, x, x, need_weights=False, attn_mask=self.attn_mask)[0]
def forward(self, x: torch.Tensor):
x = x + self.attention(self.ln_1(x))
x = x + self.mlp(self.ln_2(x))
return x
class StyleAdapter(nn.Module):
def __init__(self, width=1024, context_dim=768, num_head=8, n_layes=3, num_token=4):
super().__init__()
scale = width ** -0.5
self.transformer_layes = nn.Sequential(*[ResidualAttentionBlock(width, num_head) for _ in range(n_layes)])
self.num_token = num_token
self.style_embedding = nn.Parameter(torch.randn(1, num_token, width) * scale)
self.ln_post = LayerNorm(width)
self.ln_pre = LayerNorm(width)
self.proj = nn.Parameter(scale * torch.randn(width, context_dim))
def forward(self, x):
# x shape [N, HW+1, C]
style_embedding = self.style_embedding + torch.zeros(
(x.shape[0], self.num_token, self.style_embedding.shape[-1]), device=x.device)
x = torch.cat([x, style_embedding], dim=1)
x = self.ln_pre(x)
x = x.permute(1, 0, 2) # NLD -> LND
x = self.transformer_layes(x)
x = x.permute(1, 0, 2) # LND -> NLD
x = self.ln_post(x[:, -self.num_token:, :])
x = x @ self.proj
return x
class ResnetBlock_light(nn.Module):
def __init__(self, in_c):
super().__init__()
self.block1 = nn.Conv2d(in_c, in_c, 3, 1, 1)
self.act = nn.ReLU()
self.block2 = nn.Conv2d(in_c, in_c, 3, 1, 1)
def forward(self, x):
h = self.block1(x)
h = self.act(h)
h = self.block2(h)
return h + x
class extractor(nn.Module):
def __init__(self, in_c, inter_c, out_c, nums_rb, down=False):
super().__init__()
self.in_conv = nn.Conv2d(in_c, inter_c, 1, 1, 0)
self.body = []
for _ in range(nums_rb):
self.body.append(ResnetBlock_light(inter_c))
self.body = nn.Sequential(*self.body)
self.out_conv = nn.Conv2d(inter_c, out_c, 1, 1, 0)
self.down = down
if self.down == True:
self.down_opt = Downsample(in_c, use_conv=False)
def forward(self, x):
if self.down == True:
x = self.down_opt(x)
x = self.in_conv(x)
x = self.body(x)
x = self.out_conv(x)
return x
class Adapter_light(nn.Module):
def __init__(self, channels=[320, 640, 1280, 1280], nums_rb=3, cin=64):
super(Adapter_light, self).__init__()
self.unshuffle_amount = 8
self.unshuffle = nn.PixelUnshuffle(self.unshuffle_amount)
self.input_channels = cin // (self.unshuffle_amount * self.unshuffle_amount)
self.channels = channels
self.nums_rb = nums_rb
self.body = []
self.xl = False
for i in range(len(channels)):
if i == 0:
self.body.append(extractor(in_c=cin, inter_c=channels[i]//4, out_c=channels[i], nums_rb=nums_rb, down=False))
else:
self.body.append(extractor(in_c=channels[i-1], inter_c=channels[i]//4, out_c=channels[i], nums_rb=nums_rb, down=True))
self.body = nn.ModuleList(self.body)
def forward(self, x):
# unshuffle
x = self.unshuffle(x)
# extract features
features = []
for i in range(len(self.channels)):
x = self.body[i](x)
features.append(None)
features.append(None)
features.append(x)
return features
|