|
import gradio as gr |
|
from gradio.mix import Parallel, Series |
|
|
|
from transformers import pipeline |
|
|
|
translater = pipeline("translation", model="VietAI/envit5-translation") |
|
|
|
|
|
def translate(inp, direction): |
|
if direction == 'en->vi': |
|
text = "en: " + inp |
|
else: |
|
text = "vi: " + inp |
|
|
|
res = translater( |
|
text, |
|
max_length=512, |
|
early_stopping=True, |
|
)[0]['translation_text'][3:] |
|
return res |
|
|
|
description = """ |
|
<p> |
|
<center> |
|
Multi-domain Translation Between English and Vietnamese |
|
</center> |
|
</p> |
|
""" |
|
article = "<p style='text-align: center'><a href='http://translate.vietai.org' target='_blank'>by VietAI Research</a> | <a href='https://github.com/vietai/mTet' target='_blank'>Github</a> | Contact: <a href='mailto:[email protected]' target='_blank'>Hieu Tran</a></p></center></p>" |
|
examples = [ |
|
["Dear God, thank you for granting us the evergreen garden of this world", "en->vi"], |
|
["Thuốc này đã bị cấm sử dụng trong ngành thú y tại Ấn Độ.", "vi->en"] |
|
] |
|
iface = gr.Interface( |
|
fn=translate, |
|
|
|
title="🌸MTet Translation🌸", |
|
description=description, |
|
article=article, |
|
examples=examples, |
|
inputs=[ |
|
gr.inputs.Textbox(lines=5, placeholder="Enter text (maximum 5 lines)", label="Input"), |
|
gr.inputs.Radio( |
|
choices=[ |
|
'en->vi', |
|
'vi->en'], |
|
default='en->vi', |
|
label='Direction'), |
|
], |
|
outputs="text") |
|
|
|
iface.launch(enable_queue=True) |