|
import argparse |
|
import cv2 |
|
import numpy as np |
|
import os |
|
import torch |
|
import torch.nn.functional as F |
|
from torchvision.transforms import Compose |
|
from tqdm import tqdm |
|
|
|
from depth_anything.dpt import DepthAnything |
|
from depth_anything.util.transform import Resize, NormalizeImage, PrepareForNet |
|
|
|
|
|
if __name__ == '__main__': |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument('--img-path', type=str) |
|
parser.add_argument('--outdir', type=str, default='./vis_depth') |
|
parser.add_argument('--encoder', type=str, default='vitl', choices=['vits', 'vitb', 'vitl']) |
|
|
|
parser.add_argument('--pred-only', dest='pred_only', action='store_true', help='only display the prediction') |
|
parser.add_argument('--grayscale', dest='grayscale', action='store_true', help='do not apply colorful palette') |
|
|
|
args = parser.parse_args() |
|
|
|
margin_width = 50 |
|
caption_height = 60 |
|
|
|
font = cv2.FONT_HERSHEY_SIMPLEX |
|
font_scale = 1 |
|
font_thickness = 2 |
|
|
|
DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu' |
|
|
|
depth_anything = DepthAnything.from_pretrained('LiheYoung/depth_anything_{}14'.format(args.encoder)).to(DEVICE).eval() |
|
|
|
total_params = sum(param.numel() for param in depth_anything.parameters()) |
|
print('Total parameters: {:.2f}M'.format(total_params / 1e6)) |
|
|
|
transform = Compose([ |
|
Resize( |
|
width=518, |
|
height=518, |
|
resize_target=False, |
|
keep_aspect_ratio=True, |
|
ensure_multiple_of=14, |
|
resize_method='lower_bound', |
|
image_interpolation_method=cv2.INTER_CUBIC, |
|
), |
|
NormalizeImage(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), |
|
PrepareForNet(), |
|
]) |
|
|
|
if os.path.isfile(args.img_path): |
|
if args.img_path.endswith('txt'): |
|
with open(args.img_path, 'r') as f: |
|
filenames = f.read().splitlines() |
|
else: |
|
filenames = [args.img_path] |
|
else: |
|
filenames = os.listdir(args.img_path) |
|
filenames = [os.path.join(args.img_path, filename) for filename in filenames if not filename.startswith('.')] |
|
filenames.sort() |
|
|
|
os.makedirs(args.outdir, exist_ok=True) |
|
|
|
for filename in tqdm(filenames): |
|
raw_image = cv2.imread(filename) |
|
image = cv2.cvtColor(raw_image, cv2.COLOR_BGR2RGB) / 255.0 |
|
|
|
h, w = image.shape[:2] |
|
|
|
image = transform({'image': image})['image'] |
|
image = torch.from_numpy(image).unsqueeze(0).to(DEVICE) |
|
|
|
with torch.no_grad(): |
|
depth = depth_anything(image) |
|
|
|
depth = F.interpolate(depth[None], (h, w), mode='bilinear', align_corners=False)[0, 0] |
|
depth = (depth - depth.min()) / (depth.max() - depth.min()) * 255.0 |
|
|
|
depth = depth.cpu().numpy().astype(np.uint8) |
|
|
|
if args.grayscale: |
|
depth = np.repeat(depth[..., np.newaxis], 3, axis=-1) |
|
else: |
|
depth = cv2.applyColorMap(depth, cv2.COLORMAP_INFERNO) |
|
|
|
filename = os.path.basename(filename) |
|
|
|
if args.pred_only: |
|
cv2.imwrite(os.path.join(args.outdir, filename[:filename.rfind('.')] + '_depth.png'), depth) |
|
else: |
|
split_region = np.ones((raw_image.shape[0], margin_width, 3), dtype=np.uint8) * 255 |
|
combined_results = cv2.hconcat([raw_image, split_region, depth]) |
|
|
|
caption_space = np.ones((caption_height, combined_results.shape[1], 3), dtype=np.uint8) * 255 |
|
captions = ['Raw image', 'Depth Anything'] |
|
segment_width = w + margin_width |
|
|
|
for i, caption in enumerate(captions): |
|
|
|
text_size = cv2.getTextSize(caption, font, font_scale, font_thickness)[0] |
|
|
|
|
|
text_x = int((segment_width * i) + (w - text_size[0]) / 2) |
|
|
|
|
|
cv2.putText(caption_space, caption, (text_x, 40), font, font_scale, (0, 0, 0), font_thickness) |
|
|
|
final_result = cv2.vconcat([caption_space, combined_results]) |
|
|
|
cv2.imwrite(os.path.join(args.outdir, filename[:filename.rfind('.')] + '_img_depth.png'), final_result) |
|
|