|
import gradio as gr |
|
from text_to_video import model_t2v_fun,setup_seed |
|
from omegaconf import OmegaConf |
|
import torch |
|
import imageio |
|
import os |
|
import cv2 |
|
import pandas as pd |
|
import torchvision |
|
import random |
|
config_path = "/mnt/petrelfs/zhouyan/project/lavie-release/base/configs/sample.yaml" |
|
args = OmegaConf.load("/mnt/petrelfs/zhouyan/project/lavie-release/base/configs/sample.yaml") |
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
|
|
model_t2V = model_t2v_fun(args) |
|
model_t2V.to(device) |
|
if device == "cuda": |
|
model_t2V.enable_xformers_memory_efficient_attention() |
|
|
|
|
|
css = """ |
|
h1 { |
|
text-align: center; |
|
} |
|
#component-0 { |
|
max-width: 730px; |
|
margin: auto; |
|
} |
|
""" |
|
|
|
def infer(prompt, seed_inp, ddim_steps,cfg): |
|
if seed_inp!=-1: |
|
setup_seed(seed_inp) |
|
else: |
|
seed_inp = random.choice(range(10000000)) |
|
setup_seed(seed_inp) |
|
videos = model_t2V(prompt, video_length=16, height = 320, width= 512, num_inference_steps=ddim_steps, guidance_scale=cfg).video |
|
print(videos[0].shape) |
|
if not os.path.exists(args.output_folder): |
|
os.mkdir(args.output_folder) |
|
torchvision.io.write_video(args.output_folder + prompt[0:30].replace(' ', '_') + '-'+str(seed_inp)+'-'+str(ddim_steps)+'-'+str(cfg)+ '-.mp4', videos[0], fps=8) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
return args.output_folder + prompt[0:30].replace(' ', '_') + '-'+str(seed_inp)+'-'+str(ddim_steps)+'-'+str(cfg)+ '-.mp4' |
|
|
|
print(1) |
|
|
|
|
|
|
|
def clean(): |
|
return gr.Video.update(value=None) |
|
|
|
title = """ |
|
<div style="text-align: center; max-width: 700px; margin: 0 auto;"> |
|
<div |
|
style=" |
|
display: inline-flex; |
|
align-items: center; |
|
gap: 0.8rem; |
|
font-size: 1.75rem; |
|
" |
|
> |
|
<h1 style="font-weight: 900; margin-bottom: 7px; margin-top: 5px;"> |
|
Intern路Vchitect (Text-to-Video) |
|
</h1> |
|
</div> |
|
<p style="margin-bottom: 10px; font-size: 94%"> |
|
Apply Intern路Vchitect to generate a video |
|
</p> |
|
</div> |
|
""" |
|
|
|
|
|
with gr.Blocks(css='style.css') as demo: |
|
gr.Markdown("<font color=red size=10><center>LaVie: Text-to-Video generation</center></font>") |
|
with gr.Column(): |
|
with gr.Row(elem_id="col-container"): |
|
|
|
|
|
with gr.Column(): |
|
|
|
prompt = gr.Textbox(value="a teddy bear walking on the street", label="Prompt", placeholder="enter prompt", show_label=True, elem_id="prompt-in", min_width=200, lines=2) |
|
|
|
ddim_steps = gr.Slider(label='Steps', minimum=50, maximum=300, value=50, step=1) |
|
seed_inp = gr.Slider(value=-1,label="seed (for random generation, use -1)",show_label=True,minimum=-1,maximum=2147483647) |
|
cfg = gr.Number(label="guidance_scale",value=7) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
with gr.Column(): |
|
submit_btn = gr.Button("Generate video") |
|
clean_btn = gr.Button("Clean video") |
|
|
|
|
|
video_out = gr.Video(label="Video result", elem_id="video-output") |
|
|
|
|
|
|
|
|
|
|
|
|
|
inputs = [prompt, seed_inp, ddim_steps,cfg] |
|
outputs = [video_out] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ex = gr.Examples( |
|
examples = [['a corgi walking in the park at sunrise, oil painting style',400,50,7], |
|
['a cut teddy bear reading a book in the park, oil painting style, high quality',700,50,7], |
|
['an epic tornado attacking above a glowing city at night, the tornado is made of smoke, highly detailed',230,50,7], |
|
['a jar filled with fire, 4K video, 3D rendered, well-rendered',400,50,7], |
|
['a teddy bear walking in the park, oil painting style, high quality',400,50,7], |
|
['a teddy bear walking on the street, 2k, high quality',100,50,7], |
|
['a panda taking a selfie, 2k, high quality',400,50,7], |
|
['a polar bear playing drum kit in NYC Times Square, 4k, high resolution',400,50,7], |
|
['jungle river at sunset, ultra quality',400,50,7], |
|
['a shark swimming in clear Carribean ocean, 2k, high quality',400,50,7], |
|
['A steam train moving on a mountainside by Vincent van Gogh',230,50,7], |
|
['a confused grizzly bear in calculus class',1000,50,7]], |
|
fn = infer, |
|
inputs=[prompt, seed_inp, ddim_steps,cfg], |
|
outputs=[video_out], |
|
cache_examples=True, |
|
) |
|
ex.dataset.headers = [""] |
|
|
|
|
|
|
|
clean_btn.click(clean, inputs=[], outputs=[video_out], queue=False) |
|
submit_btn.click(infer, inputs, outputs) |
|
|
|
|
|
print(2) |
|
demo.queue(max_size=12).launch(server_name="0.0.0.0", server_port=7860) |
|
|
|
|
|
|