Spaces:
Running
on
Zero
Running
on
Zero
File size: 4,665 Bytes
cc979ab |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 |
import torch
import numpy as np
import torch.nn as nn
import torch.nn.functional as F
import torchvision.models as models
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
class EPE(nn.Module):
def __init__(self):
super(EPE, self).__init__()
def forward(self, flow, gt, loss_mask):
loss_map = (flow - gt.detach()) ** 2
loss_map = (loss_map.sum(1, True) + 1e-6) ** 0.5
return loss_map * loss_mask
class Ternary(nn.Module):
def __init__(self):
super(Ternary, self).__init__()
patch_size = 7
out_channels = patch_size * patch_size
self.w = np.eye(out_channels).reshape((patch_size, patch_size, 1, out_channels))
self.w = np.transpose(self.w, (3, 2, 0, 1))
self.w = torch.tensor(self.w).float().to(device)
def transform(self, img):
patches = F.conv2d(img, self.w, padding=3, bias=None)
transf = patches - img
transf_norm = transf / torch.sqrt(0.81 + transf**2)
return transf_norm
def rgb2gray(self, rgb):
r, g, b = rgb[:, 0:1, :, :], rgb[:, 1:2, :, :], rgb[:, 2:3, :, :]
gray = 0.2989 * r + 0.5870 * g + 0.1140 * b
return gray
def hamming(self, t1, t2):
dist = (t1 - t2) ** 2
dist_norm = torch.mean(dist / (0.1 + dist), 1, True)
return dist_norm
def valid_mask(self, t, padding):
n, _, h, w = t.size()
inner = torch.ones(n, 1, h - 2 * padding, w - 2 * padding).type_as(t)
mask = F.pad(inner, [padding] * 4)
return mask
def forward(self, img0, img1):
img0 = self.transform(self.rgb2gray(img0))
img1 = self.transform(self.rgb2gray(img1))
return self.hamming(img0, img1) * self.valid_mask(img0, 1)
class SOBEL(nn.Module):
def __init__(self):
super(SOBEL, self).__init__()
self.kernelX = torch.tensor(
[
[1, 0, -1],
[2, 0, -2],
[1, 0, -1],
]
).float()
self.kernelY = self.kernelX.clone().T
self.kernelX = self.kernelX.unsqueeze(0).unsqueeze(0).to(device)
self.kernelY = self.kernelY.unsqueeze(0).unsqueeze(0).to(device)
def forward(self, pred, gt):
N, C, H, W = pred.shape[0], pred.shape[1], pred.shape[2], pred.shape[3]
img_stack = torch.cat([pred.reshape(N * C, 1, H, W), gt.reshape(N * C, 1, H, W)], 0)
sobel_stack_x = F.conv2d(img_stack, self.kernelX, padding=1)
sobel_stack_y = F.conv2d(img_stack, self.kernelY, padding=1)
pred_X, gt_X = sobel_stack_x[: N * C], sobel_stack_x[N * C :]
pred_Y, gt_Y = sobel_stack_y[: N * C], sobel_stack_y[N * C :]
L1X, L1Y = torch.abs(pred_X - gt_X), torch.abs(pred_Y - gt_Y)
loss = L1X + L1Y
return loss
class MeanShift(nn.Conv2d):
def __init__(self, data_mean, data_std, data_range=1, norm=True):
c = len(data_mean)
super(MeanShift, self).__init__(c, c, kernel_size=1)
std = torch.Tensor(data_std)
self.weight.data = torch.eye(c).view(c, c, 1, 1)
if norm:
self.weight.data.div_(std.view(c, 1, 1, 1))
self.bias.data = -1 * data_range * torch.Tensor(data_mean)
self.bias.data.div_(std)
else:
self.weight.data.mul_(std.view(c, 1, 1, 1))
self.bias.data = data_range * torch.Tensor(data_mean)
self.requires_grad = False
class VGGPerceptualLoss(torch.nn.Module):
def __init__(self, rank=0):
super(VGGPerceptualLoss, self).__init__()
blocks = []
pretrained = True
self.vgg_pretrained_features = models.vgg19(pretrained=pretrained).features
self.normalize = MeanShift([0.485, 0.456, 0.406], [0.229, 0.224, 0.225], norm=True).cuda()
for param in self.parameters():
param.requires_grad = False
def forward(self, X, Y, indices=None):
X = self.normalize(X)
Y = self.normalize(Y)
indices = [2, 7, 12, 21, 30]
weights = [1.0 / 2.6, 1.0 / 4.8, 1.0 / 3.7, 1.0 / 5.6, 10 / 1.5]
k = 0
loss = 0
for i in range(indices[-1]):
X = self.vgg_pretrained_features[i](X)
Y = self.vgg_pretrained_features[i](Y)
if (i + 1) in indices:
loss += weights[k] * (X - Y.detach()).abs().mean() * 0.1
k += 1
return loss
if __name__ == "__main__":
img0 = torch.zeros(3, 3, 256, 256).float().to(device)
img1 = torch.tensor(np.random.normal(0, 1, (3, 3, 256, 256))).float().to(device)
ternary_loss = Ternary()
print(ternary_loss(img0, img1).shape)
|