Spaces:
Running
on
Zero
Running
on
Zero
File size: 3,390 Bytes
cc979ab |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 |
import torch
import torch.nn as nn
from .warplayer import warp
import torch.nn.functional as F
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
def conv(in_planes, out_planes, kernel_size=3, stride=1, padding=1, dilation=1):
return nn.Sequential(
nn.Conv2d(
in_planes,
out_planes,
kernel_size=kernel_size,
stride=stride,
padding=padding,
dilation=dilation,
bias=True,
),
nn.PReLU(out_planes),
)
def deconv(in_planes, out_planes, kernel_size=4, stride=2, padding=1):
return nn.Sequential(
torch.nn.ConvTranspose2d(
in_channels=in_planes, out_channels=out_planes, kernel_size=4, stride=2, padding=1, bias=True
),
nn.PReLU(out_planes),
)
class Conv2(nn.Module):
def __init__(self, in_planes, out_planes, stride=2):
super(Conv2, self).__init__()
self.conv1 = conv(in_planes, out_planes, 3, stride, 1)
self.conv2 = conv(out_planes, out_planes, 3, 1, 1)
def forward(self, x):
x = self.conv1(x)
x = self.conv2(x)
return x
c = 16
class Contextnet(nn.Module):
def __init__(self):
super(Contextnet, self).__init__()
self.conv1 = Conv2(3, c)
self.conv2 = Conv2(c, 2 * c)
self.conv3 = Conv2(2 * c, 4 * c)
self.conv4 = Conv2(4 * c, 8 * c)
def forward(self, x, flow):
x = self.conv1(x)
flow = (
F.interpolate(flow, scale_factor=0.5, mode="bilinear", align_corners=False, recompute_scale_factor=False)
* 0.5
)
f1 = warp(x, flow)
x = self.conv2(x)
flow = (
F.interpolate(flow, scale_factor=0.5, mode="bilinear", align_corners=False, recompute_scale_factor=False)
* 0.5
)
f2 = warp(x, flow)
x = self.conv3(x)
flow = (
F.interpolate(flow, scale_factor=0.5, mode="bilinear", align_corners=False, recompute_scale_factor=False)
* 0.5
)
f3 = warp(x, flow)
x = self.conv4(x)
flow = (
F.interpolate(flow, scale_factor=0.5, mode="bilinear", align_corners=False, recompute_scale_factor=False)
* 0.5
)
f4 = warp(x, flow)
return [f1, f2, f3, f4]
class Unet(nn.Module):
def __init__(self):
super(Unet, self).__init__()
self.down0 = Conv2(17, 2 * c)
self.down1 = Conv2(4 * c, 4 * c)
self.down2 = Conv2(8 * c, 8 * c)
self.down3 = Conv2(16 * c, 16 * c)
self.up0 = deconv(32 * c, 8 * c)
self.up1 = deconv(16 * c, 4 * c)
self.up2 = deconv(8 * c, 2 * c)
self.up3 = deconv(4 * c, c)
self.conv = nn.Conv2d(c, 3, 3, 1, 1)
def forward(self, img0, img1, warped_img0, warped_img1, mask, flow, c0, c1):
s0 = self.down0(torch.cat((img0, img1, warped_img0, warped_img1, mask, flow), 1))
s1 = self.down1(torch.cat((s0, c0[0], c1[0]), 1))
s2 = self.down2(torch.cat((s1, c0[1], c1[1]), 1))
s3 = self.down3(torch.cat((s2, c0[2], c1[2]), 1))
x = self.up0(torch.cat((s3, c0[3], c1[3]), 1))
x = self.up1(torch.cat((x, s2), 1))
x = self.up2(torch.cat((x, s1), 1))
x = self.up3(torch.cat((x, s0), 1))
x = self.conv(x)
return torch.sigmoid(x)
|