tsqn's picture
Update app.py
b023352 verified
"""
THis is the main file for the gradio web demo. It uses the CogVideoX-5B model to generate videos gradio web demo.
set environment variable OPENAI_API_KEY to use the OpenAI API to enhance the prompt.
Usage:
OpenAI_API_KEY=your_openai_api_key OPENAI_BASE_URL=https://api.openai.com/v1 python inference/gradio_web_demo.py
"""
import spaces
import math
import os
import random
import threading
import time
import cv2
import tempfile
import imageio_ffmpeg
import gradio as gr
import torch
from torchao.quantization import quantize_, int8_weight_only
from transformers import T5EncoderModel
from PIL import Image
from diffusers import (
AutoencoderKLCogVideoX,
CogVideoXPipeline,
CogVideoXDPMScheduler,
CogVideoXVideoToVideoPipeline,
CogVideoXImageToVideoPipeline,
CogVideoXTransformer3DModel,
)
from diffusers.utils import load_video, load_image
from datetime import datetime, timedelta
from diffusers.image_processor import VaeImageProcessor
import moviepy.editor as mp
import utils
import gc
transformer = CogVideoXTransformer3DModel.from_pretrained("THUDM/CogVideoX-5B", subfolder="transformer", torch_dtype=torch.bfloat16)
text_encoder = T5EncoderModel.from_pretrained("THUDM/CogVideoX-5B", subfolder="text_encoder", torch_dtype=torch.bfloat16)
vae = AutoencoderKLCogVideoX.from_pretrained("THUDM/CogVideoX-5B", subfolder="vae", torch_dtype=torch.bfloat16)
pipe = CogVideoXPipeline.from_pretrained(
"THUDM/CogVideoX-5B",
text_encoder=text_encoder,
transformer=transformer,
vae=vae,
torch_dtype=torch.bfloat16
).to("cuda")
pipe.scheduler = CogVideoXDPMScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing")
pipe.vae.enable_tiling()
os.makedirs("./output", exist_ok=True)
os.makedirs("./gradio_tmp", exist_ok=True)
sys_prompt = """You are part of a team of bots that creates videos. You work with an assistant bot that will draw anything you say in square brackets.
For example , outputting " a beautiful morning in the woods with the sun peaking through the trees " will trigger your partner bot to output an video of a forest morning , as described. You will be prompted by people looking to create detailed , amazing videos. The way to accomplish this is to take their short prompts and make them extremely detailed and descriptive.
There are a few rules to follow:
You will only ever output a single video description per user request.
When modifications are requested , you should not simply make the description longer . You should refactor the entire description to integrate the suggestions.
Other times the user will not want modifications , but instead want a new image . In this case , you should ignore your previous conversation with the user.
Video descriptions must have the same num of words as examples below. Extra words will be ignored.
"""
def infer(
prompt: str,
num_inference_steps: int,
guidance_scale: float,
seed: int = -1,
progress=gr.Progress(track_tqdm=True),
):
if seed == -1:
seed = random.randint(0, 2**8 - 1)
pipe.to("cuda")
video_pt = pipe(
prompt=prompt,
num_videos_per_prompt=1,
num_inference_steps=num_inference_steps,
num_frames=24,
use_dynamic_cfg=True,
output_type="pt",
guidance_scale=guidance_scale,
generator=torch.Generator(device="cuda").manual_seed(seed),
).frames
pipe.to("cuda")
torch.cuda.empty_cache()
gc.collect()
return (video_pt, seed)
def convert_to_gif(video_path):
clip = mp.VideoFileClip(video_path)
clip = clip.set_fps(8)
clip = clip.resize(height=240)
gif_path = video_path.replace(".mp4", ".gif")
clip.write_gif(gif_path, fps=8)
return gif_path
def delete_old_files():
while True:
now = datetime.now()
cutoff = now - timedelta(minutes=10)
directories = ["./output", "./gradio_tmp"]
for directory in directories:
for filename in os.listdir(directory):
file_path = os.path.join(directory, filename)
if os.path.isfile(file_path):
file_mtime = datetime.fromtimestamp(os.path.getmtime(file_path))
if file_mtime < cutoff:
os.remove(file_path)
time.sleep(600)
threading.Thread(target=delete_old_files, daemon=True).start()
examples_videos = [["example_videos/horse.mp4"], ["example_videos/kitten.mp4"], ["example_videos/train_running.mp4"]]
examples_images = [["example_images/beach.png"], ["example_images/street.png"], ["example_images/camping.png"]]
with gr.Blocks() as demo:
gr.Markdown("""
<div style="text-align: center; font-size: 32px; font-weight: bold; margin-bottom: 20px;">
CogVideoX-5B Huggingface SpaceπŸ€—
</div>
<div style="text-align: center;">
<a href="https://huggingface.co/THUDM/CogVideoX-5B">πŸ€— 5B(T2V) Model Hub</a> |
<a href="https://huggingface.co/THUDM/CogVideoX-5B-I2V">πŸ€— 5B(I2V) Model Hub</a> |
<a href="https://github.com/THUDM/CogVideo">🌐 Github</a> |
<a href="https://arxiv.org/pdf/2408.06072">πŸ“œ arxiv </a>
</div>
<div style="text-align: center;display: flex;justify-content: center;align-items: center;margin-top: 1em;margin-bottom: .5em;">
<span>If the Space is too busy, duplicate it to use privately</span>
<a href="https://huggingface.co/spaces/tsqn/CogVideoX-5B-Space?duplicate=true"><img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/duplicate-this-space-lg.svg" width="160" style="
margin-left: .75em;
"></a>
</div>
<div style="text-align: center; font-size: 15px; font-weight: bold; color: red; margin-bottom: 20px;">
⚠️ This demo is for academic research and experiential use only.
</div>
""")
with gr.Row():
with gr.Column():
prompt = gr.Textbox(label="Prompt (Less than 200 Words)", placeholder="Enter your prompt here", lines=5)
with gr.Group():
with gr.Column():
with gr.Row():
seed_param = gr.Number(
label="Inference Seed (Enter a positive number, -1 for random)", value=-1
)
generate_button = gr.Button("🎬 Generate Video")
with gr.Column():
video_output = gr.Video(label="CogVideoX Generate Video", width=720, height=480)
with gr.Row():
download_video_button = gr.File(label="πŸ“₯ Download Video", visible=False)
download_gif_button = gr.File(label="πŸ“₯ Download GIF", visible=False)
seed_text = gr.Number(label="Seed Used for Video Generation", visible=False)
gr.Markdown("""
<table border="0" style="width: 100%; text-align: left; margin-top: 20px;">
<div style="text-align: center; font-size: 32px; font-weight: bold; margin-bottom: 20px;">
πŸŽ₯ Video Gallery
</div>
<tr>
<td style="width: 25%; vertical-align: top; font-size: 0.9em;">
<p>A garden comes to life as a kaleidoscope of butterflies flutters amidst the blossoms, their delicate wings casting shadows on the petals below. In the background, a grand fountain cascades water with a gentle splendor, its rhythmic sound providing a soothing backdrop. Beneath the cool shade of a mature tree, a solitary wooden chair invites solitude and reflection, its smooth surface worn by the touch of countless visitors seeking a moment of tranquility in nature's embrace.</p>
</td>
<td style="width: 25%; vertical-align: top;">
<video src="https://github.com/user-attachments/assets/cf5953ea-96d3-48fd-9907-c4708752c714" width="100%" controls autoplay loop></video>
</td>
<td style="width: 25%; vertical-align: top; font-size: 0.9em;">
<p>A small boy, head bowed and determination etched on his face, sprints through the torrential downpour as lightning crackles and thunder rumbles in the distance. The relentless rain pounds the ground, creating a chaotic dance of water droplets that mirror the dramatic sky's anger. In the far background, the silhouette of a cozy home beckons, a faint beacon of safety and warmth amidst the fierce weather. The scene is one of perseverance and the unyielding spirit of a child braving the elements.</p>
</td>
<td style="width: 25%; vertical-align: top;">
<video src="https://github.com/user-attachments/assets/fe0a78e6-b669-4800-8cf0-b5f9b5145b52" width="100%" controls autoplay loop></video>
</td>
</tr>
<tr>
<td style="width: 25%; vertical-align: top; font-size: 0.9em;">
<p>A suited astronaut, with the red dust of Mars clinging to their boots, reaches out to shake hands with an alien being, their skin a shimmering blue, under the pink-tinged sky of the fourth planet. In the background, a sleek silver rocket, a beacon of human ingenuity, stands tall, its engines powered down, as the two representatives of different worlds exchange a historic greeting amidst the desolate beauty of the Martian landscape.</p>
</td>
<td style="width: 25%; vertical-align: top;">
<video src="https://github.com/user-attachments/assets/c182f606-8f8c-421d-b414-8487070fcfcb" width="100%" controls autoplay loop></video>
</td>
<td style="width: 25%; vertical-align: top; font-size: 0.9em;">
<p>An elderly gentleman, with a serene expression, sits at the water's edge, a steaming cup of tea by his side. He is engrossed in his artwork, brush in hand, as he renders an oil painting on a canvas that's propped up against a small, weathered table. The sea breeze whispers through his silver hair, gently billowing his loose-fitting white shirt, while the salty air adds an intangible element to his masterpiece in progress. The scene is one of tranquility and inspiration, with the artist's canvas capturing the vibrant hues of the setting sun reflecting off the tranquil sea.</p>
</td>
<td style="width: 25%; vertical-align: top;">
<video src="https://github.com/user-attachments/assets/7db2bbce-194d-434d-a605-350254b6c298" width="100%" controls autoplay loop></video>
</td>
</tr>
<tr>
<td style="width: 25%; vertical-align: top; font-size: 0.9em;">
<p>In a dimly lit bar, purplish light bathes the face of a mature man, his eyes blinking thoughtfully as he ponders in close-up, the background artfully blurred to focus on his introspective expression, the ambiance of the bar a mere suggestion of shadows and soft lighting.</p>
</td>
<td style="width: 25%; vertical-align: top;">
<video src="https://github.com/user-attachments/assets/62b01046-8cab-44cc-bd45-4d965bb615ec" width="100%" controls autoplay loop></video>
</td>
<td style="width: 25%; vertical-align: top; font-size: 0.9em;">
<p>A golden retriever, sporting sleek black sunglasses, with its lengthy fur flowing in the breeze, sprints playfully across a rooftop terrace, recently refreshed by a light rain. The scene unfolds from a distance, the dog's energetic bounds growing larger as it approaches the camera, its tail wagging with unrestrained joy, while droplets of water glisten on the concrete behind it. The overcast sky provides a dramatic backdrop, emphasizing the vibrant golden coat of the canine as it dashes towards the viewer.</p>
</td>
<td style="width: 25%; vertical-align: top;">
<video src="https://github.com/user-attachments/assets/d78e552a-4b3f-4b81-ac3f-3898079554f6" width="100%" controls autoplay loop></video>
</td>
</tr>
<tr>
<td style="width: 25%; vertical-align: top; font-size: 0.9em;">
<p>On a brilliant sunny day, the lakeshore is lined with an array of willow trees, their slender branches swaying gently in the soft breeze. The tranquil surface of the lake reflects the clear blue sky, while several elegant swans glide gracefully through the still water, leaving behind delicate ripples that disturb the mirror-like quality of the lake. The scene is one of serene beauty, with the willows' greenery providing a picturesque frame for the peaceful avian visitors.</p>
</td>
<td style="width: 25%; vertical-align: top;">
<video src="https://github.com/user-attachments/assets/30894f12-c741-44a2-9e6e-ddcacc231e5b" width="100%" controls autoplay loop></video>
</td>
<td style="width: 25%; vertical-align: top; font-size: 0.9em;">
<p>A Chinese mother, draped in a soft, pastel-colored robe, gently rocks back and forth in a cozy rocking chair positioned in the tranquil setting of a nursery. The dimly lit bedroom is adorned with whimsical mobiles dangling from the ceiling, casting shadows that dance on the walls. Her baby, swaddled in a delicate, patterned blanket, rests against her chest, the child's earlier cries now replaced by contented coos as the mother's soothing voice lulls the little one to sleep. The scent of lavender fills the air, adding to the serene atmosphere, while a warm, orange glow from a nearby nightlight illuminates the scene with a gentle hue, capturing a moment of tender love and comfort.</p>
</td>
<td style="width: 25%; vertical-align: top;">
<video src="https://github.com/user-attachments/assets/926575ca-7150-435b-a0ff-4900a963297b" width="100%" controls autoplay loop></video>
</td>
</tr>
</table>
""")
@spaces.GPU(duration=120)
@torch.inference_mode()
def generate(
prompt,
seed_value,
progress=gr.Progress(track_tqdm=True)
):
torch.cuda.empty_cache()
torch.cuda.synchronize()
latents, seed = infer(
prompt,
num_inference_steps=20, # Changed from 50
guidance_scale=7.0, # NOT Changed
seed=seed_value,
progress=progress,
)
batch_size = latents.shape[0]
batch_video_frames = []
for batch_idx in range(batch_size):
pt_image = latents[batch_idx]
pt_image = torch.stack([pt_image[i] for i in range(pt_image.shape[0])])
image_np = VaeImageProcessor.pt_to_numpy(pt_image)
image_pil = VaeImageProcessor.numpy_to_pil(image_np)
batch_video_frames.append(image_pil)
video_path = utils.save_video(batch_video_frames[0], fps=math.ceil((len(batch_video_frames[0]) - 1) / 6))
video_update = gr.update(visible=True, value=video_path)
gif_path = convert_to_gif(video_path)
gif_update = gr.update(visible=True, value=gif_path)
seed_update = gr.update(visible=True, value=seed)
return video_path, video_update, gif_update, seed_update
generate_button.click(
generate,
inputs=[prompt, seed_param],
outputs=[video_output, download_video_button, download_gif_button, seed_text],
)
if __name__ == "__main__":
utils.install_packages()
demo.queue(max_size=1)
demo.launch()