import gradio as gr from datasets import load_dataset import jax import numpy as np import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard #from diffusers.utils import load_image from diffusers.utils.testing_utils import load_image from PIL import Image from diffusers import FlaxStableDiffusionControlNetPipeline, FlaxControlNetModel def image_grid(imgs, rows, cols): w, h = imgs[0].size grid = Image.new("RGB", size=(cols * w, rows * h)) for i, img in enumerate(imgs): grid.paste(img, box=(i % cols * w, i // cols * h)) return grid def create_key(seed=0): return jax.random.PRNGKey(seed) def infer(prompt, negative_prompt, image): rng = create_key(0) # canny_image = load_image( # "https://huggingface.co/datasets/YiYiXu/test-doc-assets/resolve/main/blog_post_cell_10_output_0.jpeg" # ) canny_image = load_image(image) #prompts = "a living room fan" prompts = prompt negative_prompts = negative_prompt controlnet, controlnet_params = FlaxControlNetModel.from_pretrained( "tsungtao/controlnet-mlsd-202305011046", from_flax=True, dtype=jnp.float32 ) pipe, params = FlaxStableDiffusionControlNetPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5", controlnet=controlnet, revision="flax", dtype=jnp.float32 ) params["controlnet"] = controlnet_params num_samples = jax.device_count() rng = jax.random.split(rng, jax.device_count()) prompt_ids = pipe.prepare_text_inputs([prompts] * num_samples) negative_prompt_ids = pipe.prepare_text_inputs([negative_prompts] * num_samples) processed_image = pipe.prepare_image_inputs([canny_image] * num_samples) p_params = replicate(params) prompt_ids = shard(prompt_ids) negative_prompt_ids = shard(negative_prompt_ids) processed_image = shard(processed_image) output = pipe( prompt_ids=prompt_ids, image=processed_image, params=p_params, prng_seed=rng, num_inference_steps=50, neg_prompt_ids=negative_prompt_ids, jit=True, ).images output_images = pipe.numpy_to_pil(np.asarray(output.reshape((num_samples,) + output.shape[-3:]))) output_images = image_grid(output_images, num_samples // 4, 4) #output_images.save("tao/image.png") #dataset = load_dataset('imagefolder', data_dir='tao') #dataset.push_to_hub('tsungtao/tmp') return output_images #infer('','','') def infer2(prompt, negative_prompt, image): output_image = infer(prompt, negative_prompt, image) #output_image = "https://datasets-server.huggingface.co/assets/tsungtao/tmp/--/tsungtao--tmp/train/0/image/image.jpg" return output_image title = "ControlNet on MLSD Filter" description = "This is a demo on ControlNet based on mlsd filter." #examples = [["living room with TV", "fan", "https://datasets-server.huggingface.co/assets/tsungtao/diffusers-testing/--/tsungtao--diffusers-testing/train/0/images/image.jpg"]] interface = gr.Interface(fn = infer2, inputs = ["text", "text", "text"], outputs = "image",title = title, description = description, theme='gradio/soft') interface.launch(enable_queue=True)