Spaces:
Runtime error
Runtime error
Upload 2 files
Browse files- app.py +103 -0
- requirements.txt +4 -0
app.py
ADDED
@@ -0,0 +1,103 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline, StoppingCriteria, StoppingCriteriaList, TextIteratorStreamer
|
4 |
+
import time
|
5 |
+
import numpy as np
|
6 |
+
from torch.nn import functional as F
|
7 |
+
import os
|
8 |
+
from threading import Thread
|
9 |
+
|
10 |
+
print(f"Starting to load the model to memory")
|
11 |
+
m = AutoModelForCausalLM.from_pretrained(
|
12 |
+
"stabilityai/stablelm-tuned-alpha-7b", torch_dtype=torch.float16).cuda()
|
13 |
+
tok = AutoTokenizer.from_pretrained("stabilityai/stablelm-tuned-alpha-7b")
|
14 |
+
generator = pipeline('text-generation', model=m, tokenizer=tok, device=0)
|
15 |
+
print(f"Sucessfully loaded the model to the memory")
|
16 |
+
|
17 |
+
start_message = """<|SYSTEM|># StableAssistant
|
18 |
+
- StableAssistant is A helpful and harmless Open Source AI Language Model developed by Stability and CarperAI.
|
19 |
+
- StableAssistant is excited to be able to help the user, but will refuse to do anything that could be considered harmful to the user.
|
20 |
+
- StableAssistant is more than just an information source, StableAssistant is also able to write poetry, short stories, and make jokes.
|
21 |
+
- StableAssistant will refuse to participate in anything that could harm a human."""
|
22 |
+
|
23 |
+
|
24 |
+
class StopOnTokens(StoppingCriteria):
|
25 |
+
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
|
26 |
+
stop_ids = [50278, 50279, 50277, 1, 0]
|
27 |
+
for stop_id in stop_ids:
|
28 |
+
if input_ids[0][-1] == stop_id:
|
29 |
+
return True
|
30 |
+
return False
|
31 |
+
|
32 |
+
|
33 |
+
def user(message, history):
|
34 |
+
# Append the user's message to the conversation history
|
35 |
+
return "", history + [[message, ""]]
|
36 |
+
|
37 |
+
|
38 |
+
def chat(curr_system_message, history):
|
39 |
+
# Initialize a StopOnTokens object
|
40 |
+
stop = StopOnTokens()
|
41 |
+
|
42 |
+
# Construct the input message string for the model by concatenating the current system message and conversation history
|
43 |
+
messages = curr_system_message + \
|
44 |
+
"".join(["".join(["<|USER|>"+item[0], "<|ASSISTANT|>"+item[1]])
|
45 |
+
for item in history])
|
46 |
+
|
47 |
+
# Tokenize the messages string
|
48 |
+
model_inputs = tok([messages], return_tensors="pt").to("cuda")
|
49 |
+
streamer = TextIteratorStreamer(
|
50 |
+
tok, timeout=10., skip_prompt=True, skip_special_tokens=True)
|
51 |
+
generate_kwargs = dict(
|
52 |
+
model_inputs,
|
53 |
+
streamer=streamer,
|
54 |
+
max_new_tokens=1024,
|
55 |
+
do_sample=True,
|
56 |
+
top_p=0.95,
|
57 |
+
top_k=1000,
|
58 |
+
temperature=1.0,
|
59 |
+
num_beams=1,
|
60 |
+
stopping_criteria=StoppingCriteriaList([stop])
|
61 |
+
)
|
62 |
+
t = Thread(target=m.generate, kwargs=generate_kwargs)
|
63 |
+
t.start()
|
64 |
+
|
65 |
+
# print(history)
|
66 |
+
# Initialize an empty string to store the generated text
|
67 |
+
partial_text = ""
|
68 |
+
for new_text in streamer:
|
69 |
+
# print(new_text)
|
70 |
+
partial_text += new_text
|
71 |
+
history[-1][1] = partial_text
|
72 |
+
# Yield an empty string to cleanup the message textbox and the updated conversation history
|
73 |
+
yield history
|
74 |
+
return partial_text
|
75 |
+
|
76 |
+
|
77 |
+
with gr.Blocks() as demo:
|
78 |
+
# history = gr.State([])
|
79 |
+
gr.Markdown("## StableLM-Tuned-Alpha-7b Chat")
|
80 |
+
gr.HTML('''<center><a href="https://huggingface.co/spaces/stabilityai/stablelm-tuned-alpha-chat?duplicate=true"><img src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a>Duplicate the Space to skip the queue and run in a private space</center>''')
|
81 |
+
chatbot = gr.Chatbot().style(height=500)
|
82 |
+
with gr.Row():
|
83 |
+
with gr.Column():
|
84 |
+
msg = gr.Textbox(label="Chat Message Box", placeholder="Chat Message Box",
|
85 |
+
show_label=False).style(container=False)
|
86 |
+
with gr.Column():
|
87 |
+
with gr.Row():
|
88 |
+
submit = gr.Button("Submit")
|
89 |
+
stop = gr.Button("Stop")
|
90 |
+
clear = gr.Button("Clear")
|
91 |
+
system_msg = gr.Textbox(
|
92 |
+
start_message, label="System Message", interactive=False, visible=False)
|
93 |
+
|
94 |
+
submit_event = msg.submit(fn=user, inputs=[msg, chatbot], outputs=[msg, chatbot], queue=False).then(
|
95 |
+
fn=chat, inputs=[system_msg, chatbot], outputs=[chatbot], queue=True)
|
96 |
+
submit_click_event = submit.click(fn=user, inputs=[msg, chatbot], outputs=[msg, chatbot], queue=False).then(
|
97 |
+
fn=chat, inputs=[system_msg, chatbot], outputs=[chatbot], queue=True)
|
98 |
+
stop.click(fn=None, inputs=None, outputs=None, cancels=[
|
99 |
+
submit_event, submit_click_event], queue=False)
|
100 |
+
clear.click(lambda: None, None, [chatbot], queue=False)
|
101 |
+
|
102 |
+
demo.queue(max_size=32, concurrency_count=2)
|
103 |
+
demo.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gradio
|
2 |
+
torch
|
3 |
+
transformers
|
4 |
+
numpy
|