|
import gradio as gr |
|
from transformers import pipeline |
|
from transformers import AutoTokenizer |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased") |
|
|
|
classifier = pipeline("text-classification", model="tugot17/my-awesome-model", tokenizer=tokenizer) |
|
def predict(text): |
|
output = {} |
|
|
|
for result in classifier(text, top_k=None): |
|
output[result["label"]] = result["score"] |
|
|
|
return output |
|
|
|
iface = gr.Interface( |
|
fn=predict, |
|
inputs='text', |
|
outputs=gr.Label(num_top_classes=2), |
|
examples=[["SIX chances to win CASH! From 100 to 20,000 pounds txt> CSH11 and send to 87575. Cost 150p/day, 6days, 16+ TsandCs apply Reply HL 4 info"]] |
|
) |
|
|
|
iface.launch() |