tushar310 commited on
Commit
7d226eb
·
verified ·
1 Parent(s): dab01fa

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +1 -239
app.py CHANGED
@@ -6,7 +6,6 @@ import openai
6
  import requests
7
  import json
8
  import streamlit.components.v1 as components
9
- from streamlit_drawable_canvas import st_canvas
10
  import webbrowser
11
  import pickle
12
  import random
@@ -167,151 +166,6 @@ def update_chat(messages, role, content):
167
  messages.append({"role": role, "content": content})
168
  return messages
169
 
170
-
171
- # # Defining Stable Diffusion Methods
172
- # def get_image(key: str) -> Optional[Image.Image]:
173
- # if key in st.session_state:
174
- # return st.session_state[key]
175
- # return None
176
-
177
-
178
- # def set_image(key: str, img: Image.Image):
179
- # st.session_state[key] = img
180
-
181
-
182
- # def prompt_and_generate_button(prefix, pipeline_name: PIPELINE_NAMES, **kwargs):
183
- # prompt = st.text_area(
184
- # "Prompt",
185
- # value=DEFAULT_PROMPT,
186
- # key=f"{prefix}-prompt",
187
- # )
188
- # negative_prompt = st.text_area(
189
- # "Negative prompt",
190
- # value="",
191
- # key=f"{prefix}-negative-prompt",
192
- # )
193
- # steps = st.slider("Number of inference steps", min_value=1, max_value=200, value=50, key=f"{prefix}-steps")
194
- # guidance_scale = st.slider(
195
- # "Guidance scale", min_value=0.0, max_value=20.0, value=7.5, step=0.5,key=f"{prefix}-guidance"
196
- # )
197
-
198
- # if st.button("Generate image", key=f"{prefix}-btn"):
199
- # with st.spinner("Generating image..."):
200
- # image = generate(
201
- # prompt,
202
- # pipeline_name,
203
- # negative_prompt=negative_prompt,
204
- # steps=steps,
205
- # guidance_scale=guidance_scale,
206
- # **kwargs,
207
- # )
208
- # set_image(OUTPUT_IMAGE_KEY, image.copy())
209
- # st.image(image)
210
-
211
-
212
- # def width_and_height_sliders(prefix):
213
- # col1, col2 = st.columns(2)
214
- # with col1:
215
- # width = st.slider(
216
- # "Width",
217
- # min_value=512,
218
- # max_value=1024,
219
- # step=64,
220
- # value=512,
221
- # key=f"{prefix}-width",
222
- # )
223
- # with col2:
224
- # height = st.slider(
225
- # "Height",
226
- # min_value=512,
227
- # max_value=1024,
228
- # step=64,
229
- # value=512,
230
- # key=f"{prefix}-height",
231
- # )
232
- # return width, height
233
-
234
-
235
- # def image_uploader(prefix):
236
- # image = st.file_uploader("Image", ["jpg", "png"], key=f"{prefix}-uploader")
237
- # if image:
238
- # image = Image.open(image)
239
- # print(f"loaded input image of size ({image.width}, {image.height})")
240
- # image = image.resize((DEFAULT_WIDTH, DEFAULT_HEIGHT))
241
- # return image
242
-
243
- # return get_image(LOADED_IMAGE_KEY)
244
-
245
-
246
- # def inpainting():
247
- # image = image_uploader("inpainting")
248
-
249
- # if not image:
250
- # return None, None
251
-
252
- # brush_size = st.number_input("Brush Size", value=50, min_value=1, max_value=100)
253
-
254
- # canvas_result = st_canvas(
255
- # fill_color="rgba(255, 255, 255, 0.0)",
256
- # stroke_width=brush_size,
257
- # stroke_color="#FFFFFF",
258
- # background_color="#000000",
259
- # background_image=image,
260
- # update_streamlit=True,
261
- # height=image.height,
262
- # width=image.width,
263
- # drawing_mode="freedraw",
264
- # # Use repr(image) to force the component to reload when the image
265
- # # changes, i.e. when asking to use the current output image
266
- # key="inpainting",
267
- # )
268
-
269
- # if not canvas_result or canvas_result.image_data is None:
270
- # return None, None
271
-
272
- # mask = canvas_result.image_data
273
- # mask = mask[:, :, -1] > 0
274
- # if mask.sum() > 0:
275
- # mask = Image.fromarray(mask)
276
- # st.image(mask)
277
- # return image, mask
278
-
279
- # return None, None
280
-
281
-
282
- # def txt2img_tab():
283
- # prefix = "txt2img"
284
- # width, height = width_and_height_sliders(prefix)
285
- # prompt_and_generate_button(prefix, "txt2img", width=width, height=height)
286
-
287
-
288
- # def inpainting_tab():
289
- # col1, col2 = st.columns(2)
290
-
291
- # with col1:
292
- # image_input, mask_input = inpainting()
293
-
294
- # with col2:
295
- # if image_input and mask_input:
296
- # prompt_and_generate_button(
297
- # "inpaint", "inpaint", image_input=image_input, mask_input=mask_input
298
- # )
299
-
300
-
301
- # def img2img_tab():
302
- # col1, col2 = st.columns(2)
303
-
304
- # with col1:
305
- # image = image_uploader("img2img")
306
- # if image:
307
- # st.image(image)
308
-
309
- # with col2:
310
- # if image:
311
- # prompt_and_generate_button("img2img", "img2img", image_input=image)
312
-
313
- # # End of Stable Diffusion Methods
314
-
315
  # ------
316
  # Define image sizes
317
  image_sizes = {
@@ -2866,96 +2720,4 @@ Format the text as follows using HTML code and H2 sub headings: [introduction
2866
 
2867
  # Allow the user to view the conversation history and other information stored in the agent's memory
2868
  with st.expander("History/Memory"):
2869
- st.session_state.memory
2870
- # elif selected == "GPT-LipSync":
2871
- # genre = st.radio(
2872
- # "What type of content do you want to generate?",
2873
- # ('chatGPT', 'Fixed'))
2874
- # if genre == 'chatGPT':
2875
- # # Stage 1: Choose avatar image
2876
- # st.subheader("Stage 1: Choose Avatar Image")
2877
- # col1, col2 = st.columns([1, 2])
2878
- # with col1:
2879
- # avatar_images = ["avatar1.jpg", "avatar2.jpg","avatar3.jpg", "avatar4.jpg"]
2880
- # selected_avatar_index = st.selectbox("Choose your avatar image", range(len(avatar_images)), format_func=lambda i: avatar_images[i], index=0)
2881
- # # print(selected_avatar_index)
2882
- # with col2:
2883
- # st.image(avatar_images[selected_avatar_index], width=200)
2884
- # # # avatar_images = ["avatar1.jpg", "avatar2.jpg", "avatar3.jpg", "avatar4.jpg", "avatar5.jpg", "avatar6.jpg"]
2885
- # # avatar_images = ["avatar1.jpg", "avatar2.jpg"]
2886
- # # selected_avatar_index = st.selectbox("Choose your avatar image", range(len(avatar_images)), format_func=lambda i: avatar_images[i], index=0)
2887
-
2888
- # st.subheader("Stage 2: Generate Video Script")
2889
- # st.info("As soon as you enter the prompt, press CTRL+Enter or just click anywhere on the black screen!")
2890
- # prompt = st.text_area("Enter your prompt here", height=200)
2891
- # if prompt:
2892
- # st.info("Generating video script...")
2893
- # completion = openai.ChatCompletion.create(model="gpt-3.5-turbo", messages=[
2894
- # {"role": "system", "content": "You are an AI assistant custom trained and created by Alpha AI. You are proficient at everytask."},
2895
- # {"role": "user", "content": "Generate only a first person video script for the speaker on " + prompt}
2896
- # ],max_tokens=2500, temperature = 0.6,presence_penalty = 0.1,frequency_penalty = 0.1)
2897
- # # print(type(completion))
2898
- # video_script = completion.choices[0].message.content
2899
- # st.success("Video script generated successfully!")
2900
- # edit_script = st.text_area("Edit your video script here", value=video_script, height=200)
2901
- # if st.button("Accept Script", type="primary"):
2902
- # video_script = edit_script.strip()
2903
- # if text_to_speech_avatar(video_script):
2904
- # st.success("Audio has been generated! Go to Stage 3")
2905
- # # Stage 3: Generate lip sync video
2906
- # st.subheader("Stage 3: Generate Lip Sync Video")
2907
- # if st.button("Generate Video", type="primary"):
2908
- # st.spinner("Generating lip sync video...")
2909
- # # st.info("Generating lip sync video...")
2910
- # dv_index = selected_avatar_index + 1
2911
- # # avatar_image = avatar_images[selected_avatar_index]
2912
- # driving_video = f"{dv_index}.mp4"
2913
- # addition_name = st.session_state['name'][:5]
2914
- # aud_name = "dummy_" + addition_name
2915
- # output_vid = "output_" + addition_name
2916
- # # os.system(rf"python inference.py --checkpoint_path checkpoints/wav2lip_gan.pth --face {driving_video} --audio 'temp/dummy.mp3' --outfile output.mp4")
2917
- # # subprocess.run(["python", "generate_video.py", avatar_image, driving_video, "audio.wav"])
2918
- # cmd = f"python inference.py --checkpoint_path checkpoints/wav2lip_gan.pth --face {driving_video} --audio temp/{aud_name}.mp3 --outfile {output_vid}.mp4"
2919
- # subprocess.run(cmd, shell=True)
2920
- # # subprocess.run(["python", "inference.py","--checkpoint_path checkpoints/wav2lip_gan.pth","--face ",driving_video,"--audio temp/dummy.mp3","--outfile output.mp4"])
2921
- # st.success("Lip sync video generated successfully!")
2922
- # st.video(output_vid+".mp4")
2923
- # elif genre == 'Fixed':
2924
- # # Stage 1: Choose avatar image
2925
- # st.subheader("Stage 1: Choose Avatar Image")
2926
- # col1, col2 = st.columns([1, 2])
2927
- # with col1:
2928
- # avatar_images = ["avatar1.jpg", "avatar2.jpg","avatar3.jpg", "avatar4.jpg"]
2929
- # selected_avatar_index = st.selectbox("Choose your avatar image", range(len(avatar_images)), format_func=lambda i: avatar_images[i], index=0)
2930
- # # print(selected_avatar_index)
2931
- # with col2:
2932
- # st.image(avatar_images[selected_avatar_index], width=200)
2933
- # # # avatar_images = ["avatar1.jpg", "avatar2.jpg", "avatar3.jpg", "avatar4.jpg", "avatar5.jpg", "avatar6.jpg"]
2934
- # # avatar_images = ["avatar1.jpg", "avatar2.jpg"]
2935
- # # selected_avatar_index = st.selectbox("Choose your avatar image", range(len(avatar_images)), format_func=lambda i: avatar_images[i], index=0)
2936
-
2937
- # st.subheader("Stage 2: Enter the Script")
2938
- # st.info("As soon as you enter the prompt, press CTRL+Enter or just click anywhere on the black screen!")
2939
- # prompt = st.text_area("Enter your prompt here", height=200)
2940
- # if st.button("Generate Script"):
2941
- # st.info("Generating video script...")
2942
- # if text_to_speech_avatar(prompt):
2943
- # st.success("Audio has been generated! Go to Stage 3")
2944
- # # Stage 3: Generate lip sync video
2945
- # st.subheader("Stage 3: Generate Lip Sync Video")
2946
- # if st.button("Generate Video", type="primary"):
2947
- # st.spinner("Generating lip sync video...")
2948
- # # st.info("Generating lip sync video...")
2949
- # dv_index = selected_avatar_index + 1
2950
- # # avatar_image = avatar_images[selected_avatar_index]
2951
- # driving_video = f"{dv_index}.mp4"
2952
- # addition_name = st.session_state['name'][:5]
2953
- # aud_name = "dummy_" + addition_name
2954
- # output_vid = "output_" + addition_name
2955
- # # os.system(rf"python inference.py --checkpoint_path checkpoints/wav2lip_gan.pth --face {driving_video} --audio 'temp/dummy.mp3' --outfile output.mp4")
2956
- # # subprocess.run(["python", "generate_video.py", avatar_image, driving_video, "audio.wav"])
2957
- # cmd = f"python inference.py --checkpoint_path checkpoints/wav2lip_gan.pth --face {driving_video} --audio temp/{aud_name}.mp3 --outfile {output_vid}.mp4"
2958
- # subprocess.run(cmd, shell=True)
2959
- # # subprocess.run(["python", "inference.py","--checkpoint_path checkpoints/wav2lip_gan.pth","--face ",driving_video,"--audio temp/dummy.mp3","--outfile output.mp4"])
2960
- # st.success("Lip sync video generated successfully!")
2961
- # st.video(output_vid+".mp4")
 
6
  import requests
7
  import json
8
  import streamlit.components.v1 as components
 
9
  import webbrowser
10
  import pickle
11
  import random
 
166
  messages.append({"role": role, "content": content})
167
  return messages
168
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
169
  # ------
170
  # Define image sizes
171
  image_sizes = {
 
2720
 
2721
  # Allow the user to view the conversation history and other information stored in the agent's memory
2722
  with st.expander("History/Memory"):
2723
+ st.session_state.memory