Spaces:
Runtime error
Runtime error
hatim00101
commited on
Commit
•
7378948
1
Parent(s):
5b49563
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,109 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import pipeline
|
2 |
+
generator = pipeline("text-generation", model="tiiuae/falcon-rw-1b")
|
3 |
+
from sentence_transformers import SentenceTransformer , CrossEncoder
|
4 |
+
from transformers import pipeline
|
5 |
+
embedder = SentenceTransformer('all-MiniLM-L6-v2')
|
6 |
+
cross_encoder = CrossEncoder('cross-encoder/ms-marco-MiniLM-L-6-v2')
|
7 |
+
import numpy as np
|
8 |
+
import faiss
|
9 |
+
import pickle
|
10 |
+
from rank_bm25 import BM25Okapi
|
11 |
+
import gradio as gr
|
12 |
+
|
13 |
+
# Load embeddings and FAISS index
|
14 |
+
with open("Assemesment5_day4.my_faiss_embeddings.pkl", "rb") as f:
|
15 |
+
embeddings = pickle.load(f)
|
16 |
+
|
17 |
+
faiss_index = faiss.read_index("my_faiss_index.faiss")
|
18 |
+
|
19 |
+
# Load chunks
|
20 |
+
with open('chunks.pkl', 'rb') as f:
|
21 |
+
chunks = pickle.load(f)
|
22 |
+
|
23 |
+
bm25 = BM25Okapi([chunk['text'].split() for chunk in chunks])
|
24 |
+
|
25 |
+
|
26 |
+
def hybrid_search(query, top_k=5):
|
27 |
+
query_tokens = query.split()
|
28 |
+
|
29 |
+
# BM25 retrieval
|
30 |
+
bm25_scores = bm25.get_scores(query_tokens)
|
31 |
+
top_bm25_indices = np.argsort(bm25_scores)[::-1][:top_k]
|
32 |
+
|
33 |
+
# FAISS retrieval
|
34 |
+
query_embedding = embedder.encode([query])
|
35 |
+
distances, faiss_indices = faiss_index.search(query_embedding, top_k)
|
36 |
+
|
37 |
+
# Combine results
|
38 |
+
combined_indices = np.unique(np.concatenate((top_bm25_indices, faiss_indices[0])), axis=0)[:top_k]
|
39 |
+
|
40 |
+
combined_chunks = [chunks[i] for i in combined_indices]
|
41 |
+
inputs = [(query, chunk['text']) for chunk in combined_chunks]
|
42 |
+
|
43 |
+
# Cross-encoder reranking
|
44 |
+
scores = cross_encoder.predict(inputs)
|
45 |
+
reranked_chunks = [chunk for _, chunk in sorted(zip(scores, combined_chunks), reverse=True)]
|
46 |
+
|
47 |
+
return reranked_chunks
|
48 |
+
|
49 |
+
def two_stage_rag_search(query, top_k=5):
|
50 |
+
results = hybrid_search(query, top_k)
|
51 |
+
|
52 |
+
context = "\n\n".join([chunk['text'] for chunk in results])
|
53 |
+
|
54 |
+
extraction_prompt = (
|
55 |
+
f"Given the following context, extract the most relevant passage that answers the question.\n\n"
|
56 |
+
f"Context:\n{context}\n\n"
|
57 |
+
f"Question: {query}\n\n"
|
58 |
+
f"Relevant Passage:\n"
|
59 |
+
)
|
60 |
+
|
61 |
+
extraction_response = generator(extraction_prompt, max_length=1000, num_return_sequences=1)
|
62 |
+
relevant_passage = extraction_response[0]['generated_text'].strip()
|
63 |
+
|
64 |
+
answer_prompt = (
|
65 |
+
f"Based on the passage below, generate a detailed and thoughtful answer to the question.\n\n"
|
66 |
+
f"Relevant Passage: {relevant_passage}\n\n"
|
67 |
+
f"Question: {query}\n\n"
|
68 |
+
f"Answer:\n"
|
69 |
+
f"Format your response as follows:\n"
|
70 |
+
f"Metadata:\n"
|
71 |
+
f"Author: 'author'\n"
|
72 |
+
f"Title: 'title'\n"
|
73 |
+
f"Date: 'date'\n"
|
74 |
+
f"Description: 'description'\n\n"
|
75 |
+
f"Content or text:\n"
|
76 |
+
f"{relevant_passage}"
|
77 |
+
)
|
78 |
+
|
79 |
+
answer_response = generator(answer_prompt, max_length=1500, num_return_sequences=1)
|
80 |
+
final_answer = answer_response[0]['generated_text'].strip()
|
81 |
+
|
82 |
+
return final_answer
|
83 |
+
|
84 |
+
def gradio_interface(query, feedback):
|
85 |
+
results = hybrid_search(query, top_k=5)
|
86 |
+
|
87 |
+
# Convert results to a format suitable for Gradio
|
88 |
+
result_texts = "\n\n".join([f"Text: {chunk['text']}\nMetadata: {chunk['metadata']}" for chunk in results])
|
89 |
+
|
90 |
+
# Provide a detailed answer
|
91 |
+
detailed_answer = two_stage_rag_search(query)
|
92 |
+
|
93 |
+
return result_texts, detailed_answer
|
94 |
+
|
95 |
+
interface = gr.Interface(
|
96 |
+
fn=gradio_interface,
|
97 |
+
inputs=[
|
98 |
+
gr.Textbox(lines=2, placeholder="Enter your query here..."),
|
99 |
+
gr.Dropdown(choices=["positive", "negative"], label="Feedback"),
|
100 |
+
],
|
101 |
+
outputs=[
|
102 |
+
gr.Textbox(lines=20, placeholder="The search results will be displayed here..."),
|
103 |
+
gr.Textbox(lines=20, placeholder="The detailed answer will be displayed here...")
|
104 |
+
],
|
105 |
+
title="Advanced RAG Search Engine",
|
106 |
+
description="Test the advanced RAG search engine with hybrid search."
|
107 |
+
)
|
108 |
+
|
109 |
+
interface.launch()
|