Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,89 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
pip install -qU langchain-community faiss-cpu faiss-gpu langchain-openai sentence_transformers gradio
|
2 |
+
|
3 |
+
import faiss
|
4 |
+
from langchain_community.docstore.in_memory import InMemoryDocstore
|
5 |
+
from langchain_community.vectorstores import FAISS
|
6 |
+
from langchain_openai import OpenAIEmbeddings
|
7 |
+
import os
|
8 |
+
import pandas as pd
|
9 |
+
from uuid import uuid4
|
10 |
+
from langchain_core.documents import Document
|
11 |
+
import numpy as np
|
12 |
+
from sentence_transformers import SentenceTransformer
|
13 |
+
from langchain.text_splitter import CharacterTextSplitter, RecursiveCharacterTextSplitter
|
14 |
+
from langchain.chains import RetrievalQA
|
15 |
+
from langchain.llms import OpenAI
|
16 |
+
from langchain_core.prompts import ChatPromptTemplate
|
17 |
+
from langchain import PromptTemplate
|
18 |
+
import gradio as gr
|
19 |
+
|
20 |
+
df = pd.read_csv('news_paper-Cleaned.csv', encoding='utf-8', on_bad_lines='skip')
|
21 |
+
|
22 |
+
os.environ["OPENAI_API_KEY"] = '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'
|
23 |
+
embeddings = OpenAIEmbeddings(model="text-embedding-3-large")
|
24 |
+
|
25 |
+
index = faiss.IndexFlatL2(len(embeddings.embed_query("hello world")))
|
26 |
+
|
27 |
+
vector_store = FAISS(
|
28 |
+
embedding_function=embeddings,
|
29 |
+
index=index,
|
30 |
+
docstore=InMemoryDocstore(),
|
31 |
+
index_to_docstore_id={},
|
32 |
+
)
|
33 |
+
|
34 |
+
documents = [{
|
35 |
+
'title': row['title'],
|
36 |
+
'author': row['author'],
|
37 |
+
'description': row['description'],
|
38 |
+
'full_text' : row['full_text']
|
39 |
+
|
40 |
+
}
|
41 |
+
for _, row in df.iterrows()]
|
42 |
+
|
43 |
+
full_text = [Document(
|
44 |
+
page_content=str(doc),
|
45 |
+
metadata={"source": "news"},
|
46 |
+
) for doc in documents]
|
47 |
+
|
48 |
+
text_splitter = RecursiveCharacterTextSplitter(
|
49 |
+
# Set a really small chunk size, just to show.
|
50 |
+
chunk_size=1000,
|
51 |
+
chunk_overlap=100,
|
52 |
+
length_function=len,
|
53 |
+
is_separator_regex=False,
|
54 |
+
)
|
55 |
+
|
56 |
+
text_split = text_splitter.split_documents(full_text)
|
57 |
+
|
58 |
+
uuids = [str(uuid4()) for _ in range(len(text_split))]
|
59 |
+
|
60 |
+
vector_store.add_documents(documents=text_split, ids=uuids)
|
61 |
+
|
62 |
+
retriever = vector_store.as_retriever(search_type="mmr", search_kwargs={"k": 10})
|
63 |
+
|
64 |
+
def questions(query):
|
65 |
+
|
66 |
+
template = """
|
67 |
+
You are a helpful assistant that that can answer questions about specific data.
|
68 |
+
You have answer only from this Context.
|
69 |
+
You will receive 10 Answer return all and spilt between them by new line.
|
70 |
+
|
71 |
+
Question: {question}
|
72 |
+
Context: {context}
|
73 |
+
Answer:
|
74 |
+
"""
|
75 |
+
|
76 |
+
|
77 |
+
PROMPT = PromptTemplate(template=template, input_variables=['question', 'context'])
|
78 |
+
|
79 |
+
qa_chain = RetrievalQA.from_chain_type(
|
80 |
+
llm=OpenAI(),
|
81 |
+
retriever=retriever,
|
82 |
+
chain_type_kwargs={"prompt": PROMPT},
|
83 |
+
)
|
84 |
+
|
85 |
+
return qa_chain({"query": query})['result']
|
86 |
+
|
87 |
+
|
88 |
+
demo = gr.Interface(fn=questions, inputs="text", outputs="text")
|
89 |
+
demo.launch()
|