ualvi27 commited on
Commit
525adec
1 Parent(s): 9ca4096

Upload 2 files

Browse files
Files changed (2) hide show
  1. app.py +122 -0
  2. requirements.txt +6 -0
app.py ADDED
@@ -0,0 +1,122 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ from PIL import Image
3
+ from transformers import ViTFeatureExtractor, ViTForImageClassification
4
+ import warnings
5
+ import requests
6
+ import gradio as gr
7
+ import logging
8
+
9
+ warnings.filterwarnings('ignore')
10
+
11
+ # Configure logging
12
+ logging.basicConfig(level=logging.INFO)
13
+
14
+ # Load the pre-trained Vision Transformer model and feature extractor
15
+ model_name = "google/vit-base-patch16-224"
16
+ feature_extractor = ViTFeatureExtractor.from_pretrained(model_name)
17
+ model = ViTForImageClassification.from_pretrained(model_name)
18
+
19
+ # Load the API key from environment variables
20
+ api_key = os.getenv('NUTRITION_API_KEY')
21
+
22
+ if not api_key:
23
+ logging.error("API key for nutrition information is not set.")
24
+ raise ValueError("API key for nutrition information is not set. Please set the NUTRITION_API_KEY environment variable.")
25
+
26
+ def identify_image(image_path):
27
+ """Identify the food item in the image."""
28
+ try:
29
+ image = Image.open(image_path)
30
+ except Exception as e:
31
+ logging.error(f"Failed to open image: {e}")
32
+ return "Invalid image"
33
+
34
+ inputs = feature_extractor(images=image, return_tensors="pt")
35
+ outputs = model(**inputs)
36
+ logits = outputs.logits
37
+ predicted_class_idx = logits.argmax(-1).item()
38
+ predicted_label = model.config.id2label[predicted_class_idx]
39
+ food_name = predicted_label.split(',')[0]
40
+ logging.info(f"Identified food: {food_name}")
41
+ return food_name
42
+
43
+ def get_calories(food_name):
44
+ """Get the calorie information of the identified food item."""
45
+ api_url = f'https://api.api-ninjas.com/v1/nutrition?query={food_name}'
46
+ try:
47
+ response = requests.get(api_url, headers={'X-Api-Key': api_key})
48
+ response.raise_for_status()
49
+ nutrition_info = response.json()
50
+ except requests.RequestException as e:
51
+ logging.error(f"API request failed: {e}")
52
+ nutrition_info = {"Error": response.status_code, "Message": str(e)}
53
+ return nutrition_info
54
+
55
+ def format_nutrition_info(nutrition_info):
56
+ """Format the nutritional information into an HTML table."""
57
+ if "Error" in nutrition_info:
58
+ return f"Error: {nutrition_info['Error']} - {nutrition_info['Message']}"
59
+
60
+ if not nutrition_info:
61
+ return "No nutritional information found."
62
+
63
+ nutrition_data = nutrition_info[0]
64
+ table = f"""
65
+ <table border="1" style="width: 100%; border-collapse: collapse;">
66
+ <tr><th colspan="4" style="text-align: center;"><b>Nutrition Facts</b></th></tr>
67
+ <tr><td colspan="4" style="text-align: center;"><b>Food Name: {nutrition_data['name']}</b></td></tr>
68
+ <tr>
69
+ <td style="text-align: left;"><b>Calories</b></td><td style="text-align: right;">{nutrition_data['calories']}</td>
70
+ <td style="text-align: left;"><b>Serving Size (g)</b></td><td style="text-align: right;">{nutrition_data['serving_size_g']}</td>
71
+ </tr>
72
+ <tr>
73
+ <td style="text-align: left;"><b>Total Fat (g)</b></td><td style="text-align: right;">{nutrition_data['fat_total_g']}</td>
74
+ <td style="text-align: left;"><b>Saturated Fat (g)</b></td><td style="text-align: right;">{nutrition_data['fat_saturated_g']}</td>
75
+ </tr>
76
+ <tr>
77
+ <td style="text-align: left;"><b>Protein (g)</b></td><td style="text-align: right;">{nutrition_data['protein_g']}</td>
78
+ <td style="text-align: left;"><b>Sodium (mg)</b></td><td style="text-align: right;">{nutrition_data['sodium_mg']}</td>
79
+ </tr>
80
+ <tr>
81
+ <td style="text-align: left;"><b>Potassium (mg)</b></td><td style="text-align: right;">{nutrition_data['potassium_mg']}</td>
82
+ <td style="text-align: left;"><b>Cholesterol (mg)</b></td><td style="text-align: right;">{nutrition_data['cholesterol_mg']}</td>
83
+ </tr>
84
+ <tr>
85
+ <td style="text-align: left;"><b>Total Carbohydrates (g)</b></td><td style="text-align: right;">{nutrition_data['carbohydrates_total_g']}</td>
86
+ <td style="text-align: left;"><b>Fiber (g)</b></td><td style="text-align: right;">{nutrition_data['fiber_g']}</td>
87
+ </tr>
88
+ <tr>
89
+ <td style="text-align: left;"><b>Sugar (g)</b></td><td style="text-align: right;">{nutrition_data['sugar_g']}</td>
90
+ <td></td><td></td>
91
+ </tr>
92
+ </table>
93
+ """
94
+ return table
95
+
96
+ def main_process(image_path):
97
+ """Identify the food item and fetch its calorie information."""
98
+ food_name = identify_image(image_path)
99
+ if food_name == "Invalid image":
100
+ return food_name
101
+ nutrition_info = get_calories(food_name)
102
+ formatted_nutrition_info = format_nutrition_info(nutrition_info)
103
+ return formatted_nutrition_info
104
+
105
+ # Define the Gradio interface
106
+ def gradio_interface(image):
107
+ formatted_nutrition_info = main_process(image)
108
+ return formatted_nutrition_info
109
+
110
+ # Create the Gradio UI
111
+ iface = gr.Interface(
112
+ fn=gradio_interface,
113
+ inputs=gr.Image(type="filepath"),
114
+ outputs="html",
115
+ title="Food Identification and Nutrition Info",
116
+ description="Upload an image of food to get nutritional information.",
117
+ allow_flagging="never" # Disable flagging
118
+ )
119
+
120
+ # Launch the Gradio app
121
+ if __name__ == "__main__":
122
+ iface.launch()
requirements.txt ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ gradio~=4.40.0
2
+ transformers~=4.44.0
3
+ torch~=2.4.0
4
+ torchvision~=0.19.0
5
+ requests~=2.32.3
6
+ python-dotenv~=1.0.1