ualvi27 commited on
Commit
d8795ee
·
verified ·
1 Parent(s): 1b8c2e0

Upload app.py

Browse files
Files changed (1) hide show
  1. app.py +116 -0
app.py ADDED
@@ -0,0 +1,116 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ from PIL import Image
3
+ from transformers import ViTFeatureExtractor, ViTForImageClassification
4
+ import warnings
5
+ import requests
6
+ import gradio as gr
7
+ import logging
8
+ from PIL import Image
9
+ from transformers import ViTFeatureExtractor, ViTForImageClassification
10
+ import warnings
11
+ import requests
12
+ import gradio as gr
13
+
14
+ warnings.filterwarnings('ignore')
15
+
16
+ # Load the pre-trained Vision Transformer model and feature extractor
17
+ model_name = "google/vit-base-patch16-224"
18
+ feature_extractor = ViTFeatureExtractor.from_pretrained(model_name)
19
+ model = ViTForImageClassification.from_pretrained(model_name)
20
+
21
+ # API key for the nutrition information
22
+ api_key = 'TByvWJjRBllCH+fV+9vupw==8I4fm0WKBpn8VIsc'
23
+
24
+
25
+ def identify_image(image_path):
26
+ """Identify the food item in the image."""
27
+ image = Image.open(image_path)
28
+ inputs = feature_extractor(images=image, return_tensors="pt")
29
+ outputs = model(**inputs)
30
+ logits = outputs.logits
31
+ predicted_class_idx = logits.argmax(-1).item()
32
+ predicted_label = model.config.id2label[predicted_class_idx]
33
+ food_name = predicted_label.split(',')[0]
34
+ return food_name
35
+
36
+
37
+ def get_calories(food_name):
38
+ """Get the calorie information of the identified food item."""
39
+ api_url = 'https://api.api-ninjas.com/v1/nutrition?query={}'.format(food_name)
40
+ response = requests.get(api_url, headers={'X-Api-Key': api_key})
41
+ if response.status_code == requests.codes.ok:
42
+ nutrition_info = response.json()
43
+ else:
44
+ nutrition_info = {"Error": response.status_code, "Message": response.text}
45
+ return nutrition_info
46
+
47
+
48
+ def format_nutrition_info(nutrition_info):
49
+ """Format the nutritional information into an HTML table."""
50
+ if "Error" in nutrition_info:
51
+ return f"Error: {nutrition_info['Error']} - {nutrition_info['Message']}"
52
+
53
+ if len(nutrition_info) == 0:
54
+ return "No nutritional information found."
55
+
56
+ nutrition_data = nutrition_info[0]
57
+ table = f"""
58
+ <table border="1" style="width: 100%; border-collapse: collapse;">
59
+ <tr><th colspan="4" style="text-align: center;"><b>Nutrition Facts</b></th></tr>
60
+ <tr><td colspan="4" style="text-align: center;"><b>Food Name: {nutrition_data['name']}</b></td></tr>
61
+ <tr>
62
+ <td style="text-align: left;"><b>Calories</b></td><td style="text-align: right;">{nutrition_data['calories']}</td>
63
+ <td style="text-align: left;"><b>Serving Size (g)</b></td><td style="text-align: right;">{nutrition_data['serving_size_g']}</td>
64
+ </tr>
65
+ <tr>
66
+ <td style="text-align: left;"><b>Total Fat (g)</b></td><td style="text-align: right;">{nutrition_data['fat_total_g']}</td>
67
+ <td style="text-align: left;"><b>Saturated Fat (g)</b></td><td style="text-align: right;">{nutrition_data['fat_saturated_g']}</td>
68
+ </tr>
69
+ <tr>
70
+ <td style="text-align: left;"><b>Protein (g)</b></td><td style="text-align: right;">{nutrition_data['protein_g']}</td>
71
+ <td style="text-align: left;"><b>Sodium (mg)</b></td><td style="text-align: right;">{nutrition_data['sodium_mg']}</td>
72
+ </tr>
73
+ <tr>
74
+ <td style="text-align: left;"><b>Potassium (mg)</b></td><td style="text-align: right;">{nutrition_data['potassium_mg']}</td>
75
+ <td style="text-align: left;"><b>Cholesterol (mg)</b></td><td style="text-align: right;">{nutrition_data['cholesterol_mg']}</td>
76
+ </tr>
77
+ <tr>
78
+ <td style="text-align: left;"><b>Total Carbohydrates (g)</b></td><td style="text-align: right;">{nutrition_data['carbohydrates_total_g']}</td>
79
+ <td style="text-align: left;"><b>Fiber (g)</b></td><td style="text-align: right;">{nutrition_data['fiber_g']}</td>
80
+ </tr>
81
+ <tr>
82
+ <td style="text-align: left;"><b>Sugar (g)</b></td><td style="text-align: right;">{nutrition_data['sugar_g']}</td>
83
+ <td></td><td></td>
84
+ </tr>
85
+ </table>
86
+ """
87
+ return table
88
+
89
+
90
+ def main_process(image_path):
91
+ """Identify the food item and fetch its calorie information."""
92
+ food_name = identify_image(image_path)
93
+ nutrition_info = get_calories(food_name)
94
+ formatted_nutrition_info = format_nutrition_info(nutrition_info)
95
+ return formatted_nutrition_info
96
+
97
+
98
+ # Define the Gradio interface
99
+ def gradio_interface(image):
100
+ formatted_nutrition_info = main_process(image)
101
+ return formatted_nutrition_info
102
+
103
+
104
+ # Create the Gradio UI
105
+ iface = gr.Interface(
106
+ fn=gradio_interface,
107
+ inputs=gr.Image(type="filepath"),
108
+ outputs="html",
109
+ title="Food Identification and Nutrition Info",
110
+ description="Upload an image of food to get nutritional information.",
111
+ allow_flagging="never" # Disable flagging
112
+ )
113
+
114
+ # Launch the Gradio app
115
+ if __name__ == "__main__":
116
+ iface.launch()