Upload standard.py with huggingface_hub
Browse files- standard.py +46 -39
standard.py
CHANGED
@@ -1,18 +1,23 @@
|
|
1 |
-
import logging
|
2 |
from typing import List
|
3 |
|
4 |
from .card import TaskCard
|
5 |
-
from .dataclass import InternalField, OptionalField
|
6 |
-
from .formats import
|
7 |
-
from .instructions import Instruction
|
|
|
8 |
from .operator import SourceSequentialOperator, StreamingOperator
|
9 |
-
from .operators import
|
|
|
|
|
|
|
|
|
10 |
from .recipe import Recipe
|
11 |
-
from .renderers import StandardRenderer
|
12 |
from .schema import ToUnitxtGroup
|
13 |
from .splitters import Sampler, SeparateSplit, SpreadSplit
|
14 |
from .templates import Template
|
15 |
|
|
|
|
|
16 |
|
17 |
# Used to give meaningful name to recipe steps
|
18 |
class CreateDemosPool(SeparateSplit):
|
@@ -26,8 +31,8 @@ class AddDemosField(SpreadSplit):
|
|
26 |
class BaseRecipe(Recipe, SourceSequentialOperator):
|
27 |
card: TaskCard
|
28 |
template: Template = None
|
29 |
-
instruction: Instruction =
|
30 |
-
format:
|
31 |
|
32 |
loader_limit: int = None
|
33 |
|
@@ -51,6 +56,11 @@ class BaseRecipe(Recipe, SourceSequentialOperator):
|
|
51 |
|
52 |
steps: List[StreamingOperator] = InternalField(default_factory=list)
|
53 |
|
|
|
|
|
|
|
|
|
|
|
54 |
def verify(self):
|
55 |
super().verify()
|
56 |
if self.num_demos > 0:
|
@@ -60,31 +70,31 @@ class BaseRecipe(Recipe, SourceSequentialOperator):
|
|
60 |
)
|
61 |
if self.demos_pool_size < self.num_demos:
|
62 |
raise ValueError(
|
63 |
-
f"
|
64 |
)
|
65 |
if self.loader_limit and self.demos_pool_size > self.loader_limit:
|
66 |
raise ValueError(
|
67 |
-
f"demos_pool_size
|
68 |
)
|
69 |
|
70 |
if self.loader_limit:
|
71 |
if self.max_test_instances and self.max_test_instances > self.loader_limit:
|
72 |
raise ValueError(
|
73 |
-
f"max_test_instances
|
74 |
)
|
75 |
if (
|
76 |
self.max_validation_instances
|
77 |
and self.max_validation_instances > self.loader_limit
|
78 |
):
|
79 |
raise ValueError(
|
80 |
-
f"max_validation_instances
|
81 |
)
|
82 |
if (
|
83 |
self.max_train_instances
|
84 |
and self.max_train_instances > self.loader_limit
|
85 |
):
|
86 |
raise ValueError(
|
87 |
-
f"max_train_instances
|
88 |
)
|
89 |
|
90 |
def prepare(self):
|
@@ -94,7 +104,7 @@ class BaseRecipe(Recipe, SourceSequentialOperator):
|
|
94 |
|
95 |
if self.loader_limit:
|
96 |
self.card.loader.loader_limit = self.loader_limit
|
97 |
-
|
98 |
self.steps.append(StreamRefiner(max_instances=self.loader_limit))
|
99 |
|
100 |
if self.card.preprocess_steps is not None:
|
@@ -116,20 +126,15 @@ class BaseRecipe(Recipe, SourceSequentialOperator):
|
|
116 |
)
|
117 |
|
118 |
if self.num_demos > 0:
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
|
|
|
|
|
|
123 |
|
124 |
-
sampler.set_size(self.num_demos)
|
125 |
-
|
126 |
-
self.steps.append(
|
127 |
-
AddDemosField(
|
128 |
-
source_stream=self.demos_pool_name,
|
129 |
-
target_field=self.demos_field,
|
130 |
-
sampler=sampler,
|
131 |
-
)
|
132 |
-
)
|
133 |
|
134 |
self.train_refiner.max_instances = self.max_train_instances
|
135 |
self.train_refiner.apply_to_streams = ["train"]
|
@@ -143,19 +148,21 @@ class BaseRecipe(Recipe, SourceSequentialOperator):
|
|
143 |
self.test_refiner.apply_to_streams = ["test"]
|
144 |
self.steps.append(self.test_refiner)
|
145 |
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
|
|
|
|
155 |
if self.augmentor.augment_model_input:
|
156 |
self.steps.append(self.augmentor)
|
157 |
|
158 |
-
postprocessors =
|
159 |
|
160 |
self.steps.append(
|
161 |
ToUnitxtGroup(
|
@@ -198,7 +205,7 @@ class StandardRecipeWithIndexes(BaseRecipe):
|
|
198 |
|
199 |
|
200 |
class StandardRecipe(StandardRecipeWithIndexes):
|
201 |
-
"""This class represents a standard recipe for data processing and
|
202 |
|
203 |
This class can be used to prepare a recipe.
|
204 |
with all necessary steps, refiners and renderers included. It allows to set various
|
@@ -209,7 +216,7 @@ class StandardRecipe(StandardRecipeWithIndexes):
|
|
209 |
template (Template, optional): Template object to be used for the recipe.
|
210 |
instruction (Instruction, optional): Instruction object to be used for the recipe.
|
211 |
loader_limit (int, optional): Specifies the maximum number of instances per stream to be returned from the loader (used to reduce loading time in large datasets)
|
212 |
-
format (
|
213 |
train_refiner (StreamRefiner, optional): Train refiner to be used in the recipe.
|
214 |
max_train_instances (int, optional): Maximum training instances for the refiner.
|
215 |
validation_refiner (StreamRefiner, optional): Validation refiner to be used in the recipe.
|
|
|
|
|
1 |
from typing import List
|
2 |
|
3 |
from .card import TaskCard
|
4 |
+
from .dataclass import Field, InternalField, OptionalField
|
5 |
+
from .formats import Format, SystemFormat
|
6 |
+
from .instructions import EmptyInstruction, Instruction
|
7 |
+
from .logging_utils import get_logger
|
8 |
from .operator import SourceSequentialOperator, StreamingOperator
|
9 |
+
from .operators import (
|
10 |
+
Augmentor,
|
11 |
+
NullAugmentor,
|
12 |
+
StreamRefiner,
|
13 |
+
)
|
14 |
from .recipe import Recipe
|
|
|
15 |
from .schema import ToUnitxtGroup
|
16 |
from .splitters import Sampler, SeparateSplit, SpreadSplit
|
17 |
from .templates import Template
|
18 |
|
19 |
+
logger = get_logger()
|
20 |
+
|
21 |
|
22 |
# Used to give meaningful name to recipe steps
|
23 |
class CreateDemosPool(SeparateSplit):
|
|
|
31 |
class BaseRecipe(Recipe, SourceSequentialOperator):
|
32 |
card: TaskCard
|
33 |
template: Template = None
|
34 |
+
instruction: Instruction = Field(default_factory=EmptyInstruction)
|
35 |
+
format: Format = Field(default_factory=SystemFormat)
|
36 |
|
37 |
loader_limit: int = None
|
38 |
|
|
|
56 |
|
57 |
steps: List[StreamingOperator] = InternalField(default_factory=list)
|
58 |
|
59 |
+
def before_process_multi_stream(self):
|
60 |
+
super().before_process_multi_stream()
|
61 |
+
if self.sampler: # e.g. when num_demos is 0, the sampler may not be initialized
|
62 |
+
self.sampler.init_new_random_generator()
|
63 |
+
|
64 |
def verify(self):
|
65 |
super().verify()
|
66 |
if self.num_demos > 0:
|
|
|
70 |
)
|
71 |
if self.demos_pool_size < self.num_demos:
|
72 |
raise ValueError(
|
73 |
+
f"num_demos (got: {self.num_demos}) should not exceed demos_pool_size (got: {self.demos_pool_size})"
|
74 |
)
|
75 |
if self.loader_limit and self.demos_pool_size > self.loader_limit:
|
76 |
raise ValueError(
|
77 |
+
f"demos_pool_size should not exceed loader_limit ({self.loader_limit}), Got demos_pool_size={self.demos_pool_size}"
|
78 |
)
|
79 |
|
80 |
if self.loader_limit:
|
81 |
if self.max_test_instances and self.max_test_instances > self.loader_limit:
|
82 |
raise ValueError(
|
83 |
+
f"max_test_instances should not exceed loader_limit ({self.loader_limit}), Got max_test_instances={self.max_test_instances}"
|
84 |
)
|
85 |
if (
|
86 |
self.max_validation_instances
|
87 |
and self.max_validation_instances > self.loader_limit
|
88 |
):
|
89 |
raise ValueError(
|
90 |
+
f"max_validation_instances should not exceed loader_limit ({self.loader_limit}), Got max_validation_instances={self.max_validation_instances}"
|
91 |
)
|
92 |
if (
|
93 |
self.max_train_instances
|
94 |
and self.max_train_instances > self.loader_limit
|
95 |
):
|
96 |
raise ValueError(
|
97 |
+
f"max_train_instances should not exceed loader_limit ({self.loader_limit}), Got max_train_instances={self.max_train_instances}"
|
98 |
)
|
99 |
|
100 |
def prepare(self):
|
|
|
104 |
|
105 |
if self.loader_limit:
|
106 |
self.card.loader.loader_limit = self.loader_limit
|
107 |
+
logger.info(f"Loader line limit was set to {self.loader_limit}")
|
108 |
self.steps.append(StreamRefiner(max_instances=self.loader_limit))
|
109 |
|
110 |
if self.card.preprocess_steps is not None:
|
|
|
126 |
)
|
127 |
|
128 |
if self.num_demos > 0:
|
129 |
+
if self.sampler is None:
|
130 |
+
if self.card.sampler is None:
|
131 |
+
raise ValueError(
|
132 |
+
"Unexpected None value for card.sampler. "
|
133 |
+
"To use num_demos > 0, please set a sampler on the TaskCard."
|
134 |
+
)
|
135 |
+
self.sampler = self.card.sampler
|
136 |
|
137 |
+
self.sampler.set_size(self.num_demos)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
138 |
|
139 |
self.train_refiner.max_instances = self.max_train_instances
|
140 |
self.train_refiner.apply_to_streams = ["train"]
|
|
|
148 |
self.test_refiner.apply_to_streams = ["test"]
|
149 |
self.steps.append(self.test_refiner)
|
150 |
|
151 |
+
self.steps.append(self.template)
|
152 |
+
if self.num_demos > 0:
|
153 |
+
self.steps.append(
|
154 |
+
AddDemosField(
|
155 |
+
source_stream=self.demos_pool_name,
|
156 |
+
target_field=self.demos_field,
|
157 |
+
sampler=self.sampler,
|
158 |
+
)
|
159 |
+
)
|
160 |
+
self.steps.append(self.instruction)
|
161 |
+
self.steps.append(self.format)
|
162 |
if self.augmentor.augment_model_input:
|
163 |
self.steps.append(self.augmentor)
|
164 |
|
165 |
+
postprocessors = self.template.get_postprocessors()
|
166 |
|
167 |
self.steps.append(
|
168 |
ToUnitxtGroup(
|
|
|
205 |
|
206 |
|
207 |
class StandardRecipe(StandardRecipeWithIndexes):
|
208 |
+
"""This class represents a standard recipe for data processing and preparation.
|
209 |
|
210 |
This class can be used to prepare a recipe.
|
211 |
with all necessary steps, refiners and renderers included. It allows to set various
|
|
|
216 |
template (Template, optional): Template object to be used for the recipe.
|
217 |
instruction (Instruction, optional): Instruction object to be used for the recipe.
|
218 |
loader_limit (int, optional): Specifies the maximum number of instances per stream to be returned from the loader (used to reduce loading time in large datasets)
|
219 |
+
format (SystemFormat, optional): SystemFormat object to be used for the recipe.
|
220 |
train_refiner (StreamRefiner, optional): Train refiner to be used in the recipe.
|
221 |
max_train_instances (int, optional): Maximum training instances for the refiner.
|
222 |
validation_refiner (StreamRefiner, optional): Validation refiner to be used in the recipe.
|