catsound / app.py
universalml's picture
Upload app.py with huggingface_hub
47e3ff0 verified
raw
history blame contribute delete
955 Bytes
from transformers import pipeline
import gradio as gr
MODEL_NAME = "catsound"
HF_USER = "universalml"
def prediction_function(input_file):
repo_id = HF_USER + "/" + MODEL_NAME
model = pipeline("audio-classification", model=repo_id)
try:
result = model(input_file)
predictions = {}
labels = []
for each_label in result:
predictions[each_label["label"]] = each_label["score"]
labels.append(each_label["label"])
result = predictions
except:
result = "no data provided!!"
return result
def create_interface():
interface = gr.Interface(
fn=prediction_function,
# inputs=gr.Audio(sources="upload", type="filepath"),
inputs=gr.Audio(sources="microphone", type="filepath"),
outputs=gr.Label(num_top_classes=3),
title=MODEL_NAME,
)
interface.launch()
create_interface()