from transformers import pipeline import gradio as gr MODEL_NAME = "catsound" HF_USER = "universalml" def prediction_function(input_file): repo_id = HF_USER + "/" + MODEL_NAME model = pipeline("audio-classification", model=repo_id) try: result = model(input_file) predictions = {} labels = [] for each_label in result: predictions[each_label["label"]] = each_label["score"] labels.append(each_label["label"]) result = predictions except: result = "no data provided!!" return result def create_interface(): interface = gr.Interface( fn=prediction_function, # inputs=gr.Audio(sources="upload", type="filepath"), inputs=gr.Audio(sources="microphone", type="filepath"), outputs=gr.Label(num_top_classes=3), title=MODEL_NAME, ) interface.launch() create_interface()