universalml commited on
Commit
b66416d
·
verified ·
1 Parent(s): 38769a4

Upload app.py with huggingface_hub

Browse files
Files changed (1) hide show
  1. app.py +71 -0
app.py ADDED
@@ -0,0 +1,71 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from sklearn.preprocessing import LabelEncoder
2
+ from huggingface_hub import hf_hub_download
3
+ import pandas as pd
4
+ import gradio as gr
5
+ import joblib
6
+
7
+
8
+ MODEL_NAME = "regressiontest"
9
+ HF_USER = "universalml"
10
+ REPO_ID = HF_USER + "/" + MODEL_NAME
11
+ MODEL = joblib.load(hf_hub_download(repo_id=REPO_ID, filename="model.joblib"))
12
+ SCALER = joblib.load(hf_hub_download(repo_id=REPO_ID, filename="scaler.joblib"))
13
+
14
+
15
+ def encode_categorical_columns(data_frame):
16
+ label_encoder = LabelEncoder()
17
+ ordinal_columns = data_frame.select_dtypes(include=['object']).columns
18
+
19
+ for col in ordinal_columns:
20
+ data_frame[col] = label_encoder.fit_transform(data_frame[col])
21
+
22
+ nominal_columns = data_frame.select_dtypes(include=['object']).columns.difference(ordinal_columns)
23
+ data_frame = pd.get_dummies(data_frame, columns=nominal_columns, drop_first=True)
24
+
25
+ return data_frame
26
+
27
+
28
+ def prediction_function(*args):
29
+ values_list = []
30
+
31
+ for arg in args:
32
+ values_list.append(int(arg))
33
+
34
+ input_data_frame = pd.DataFrame([values_list], columns=MODEL.data)
35
+ data_frame = encode_categorical_columns(input_data_frame)
36
+ scaled_input = SCALER.transform(data_frame)
37
+ prediction_result = MODEL.predict(scaled_input)[0]
38
+
39
+ return prediction_result
40
+
41
+
42
+ def regression_inputs():
43
+ input_labels = MODEL.data
44
+ inputs = []
45
+
46
+ for input_label in input_labels:
47
+ value = gr.Textbox(label=input_label, type="text")
48
+ inputs.append(value)
49
+
50
+ return inputs
51
+
52
+
53
+ def regression_output():
54
+ output_label = MODEL.target
55
+ output = gr.Textbox(label=output_label, type="text")
56
+
57
+ return output
58
+
59
+
60
+ def create_interface():
61
+ interface = gr.Interface(
62
+ fn=prediction_function,
63
+ inputs=regression_inputs(),
64
+ outputs=regression_output(),
65
+ title=MODEL_NAME,
66
+ )
67
+
68
+ interface.launch(debug=True)
69
+
70
+
71
+ create_interface()