Spaces:
Sleeping
Sleeping
import gradio as gr | |
# from transformers import pipeline | |
# from transformers.utils import logging | |
from llama_index.embeddings.huggingface import HuggingFaceEmbedding | |
import torch | |
from llama_index.core import VectorStoreIndex | |
from llama_index.core import Document | |
from llama_index.core import Settings | |
from llama_index.llms.huggingface import ( | |
HuggingFaceInferenceAPI, | |
HuggingFaceLLM, | |
) | |
#system_sr = "Zoveš se U-Chat AI asistent i pomažeš korisniku usluga kompanije United Group. Korisnik postavlja pitanje ili problem, upareno sa dodatnima saznanjima. Na osnovu toga napiši korisniku kratak i ljubazan odgovor koji kompletira njegov zahtev ili mu daje odgovor na pitanje. " | |
# " Ako ne znaš odgovor, reci da ne znaš, ne izmišljaj ga." | |
#system_sr += "Usluge kompanije United Group uključuju i kablovsku mrežu za digitalnu televiziju, pristup internetu, uređaj EON SMART BOX za TV sadržaj, kao i fiksnu telefoniju." | |
system_propmpt = "You are a friendly Chatbot." | |
# "facebook/blenderbot-400M-distill", facebook/blenderbot-400M-distill , BAAI/bge-small-en-v1.5 | |
Settings.llm = HuggingFaceLLM(model_name="stabilityai/stablelm-zephyr-3b", | |
device_map="auto", | |
system_prompt = system_propmpt, | |
context_window=4096, | |
max_new_tokens=256, | |
# stopping_ids=[50278, 50279, 50277, 1, 0], | |
generate_kwargs={"temperature": 0.5, "do_sample": False}, | |
# tokenizer_kwargs={"max_length": 4096}, | |
tokenizer_name="stabilityai/stablelm-zephyr-3b", | |
) | |
Settings.embed_model = HuggingFaceEmbedding(model_name="sentence-transformers/all-MiniLM-L6-v2") | |
documents = [Document(text="Indian parliament elections happened in April-May 2024. BJP Party won."), | |
Document(text="Indian parliament elections happened in April-May 2021. XYZ Party won."), | |
Document(text="Indian parliament elections happened in 2020. ABC Party won."), | |
] | |
index = VectorStoreIndex.from_documents( | |
documents, | |
) | |
query_engine = index.as_query_engine() | |
def rag(input_text, file): | |
return query_engine.query( | |
input_text | |
) | |
iface = gr.Interface(fn=rag, inputs=[gr.Textbox(label="Question", lines=6), gr.File()], | |
outputs=[gr.Textbox(label="Result", lines=6)], | |
title="Answer my question", | |
description= "CoolChatBot" | |
) | |
iface.launch() |