Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
Sean Cho
commited on
Commit
Β·
07b29ce
1
Parent(s):
2835e1b
update app
Browse files
app.py
CHANGED
@@ -1,7 +1,494 @@
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
-
|
4 |
-
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
-
|
7 |
-
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import os
|
3 |
+
from datetime import datetime, timezone
|
4 |
+
|
5 |
+
|
6 |
import gradio as gr
|
7 |
+
import numpy as np
|
8 |
+
import pandas as pd
|
9 |
+
from apscheduler.schedulers.background import BackgroundScheduler
|
10 |
+
from huggingface_hub import HfApi
|
11 |
+
from transformers import AutoConfig
|
12 |
+
|
13 |
+
from src.auto_leaderboard.get_model_metadata import apply_metadata
|
14 |
+
from src.assets.text_content import *
|
15 |
+
from src.auto_leaderboard.load_results import get_eval_results_dicts, make_clickable_model
|
16 |
+
from src.assets.hardcoded_evals import gpt4_values, gpt35_values, baseline
|
17 |
+
from src.assets.css_html_js import custom_css, get_window_url_params
|
18 |
+
from src.utils_display import AutoEvalColumn, EvalQueueColumn, fields, styled_error, styled_warning, styled_message
|
19 |
+
from src.init import get_all_requested_models, load_all_info_from_hub
|
20 |
+
|
21 |
+
pd.set_option('display.precision', 1)
|
22 |
+
|
23 |
+
# clone / pull the lmeh eval data
|
24 |
+
H4_TOKEN = os.environ.get("H4_TOKEN", None)
|
25 |
+
|
26 |
+
QUEUE_REPO = "open-llm-leaderboard/requests"
|
27 |
+
RESULTS_REPO = "open-llm-leaderboard/results"
|
28 |
+
|
29 |
+
PRIVATE_QUEUE_REPO = "open-llm-leaderboard/private-requests"
|
30 |
+
PRIVATE_RESULTS_REPO = "open-llm-leaderboard/private-results"
|
31 |
+
|
32 |
+
IS_PUBLIC = bool(os.environ.get("IS_PUBLIC", True))
|
33 |
+
|
34 |
+
EVAL_REQUESTS_PATH = "eval-queue"
|
35 |
+
EVAL_RESULTS_PATH = "eval-results"
|
36 |
+
|
37 |
+
EVAL_REQUESTS_PATH_PRIVATE = "eval-queue-private"
|
38 |
+
EVAL_RESULTS_PATH_PRIVATE = "eval-results-private"
|
39 |
+
|
40 |
+
api = HfApi()
|
41 |
+
|
42 |
+
def restart_space():
|
43 |
+
api.restart_space(
|
44 |
+
repo_id="HuggingFaceH4/open_llm_leaderboard", token=H4_TOKEN
|
45 |
+
)
|
46 |
+
|
47 |
+
eval_queue, requested_models, eval_results = load_all_info_from_hub(QUEUE_REPO, RESULTS_REPO, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH)
|
48 |
+
|
49 |
+
if not IS_PUBLIC:
|
50 |
+
eval_queue_private, requested_models_private, eval_results_private = load_all_info_from_hub(PRIVATE_QUEUE_REPO, PRIVATE_RESULTS_REPO, EVAL_REQUESTS_PATH_PRIVATE, EVAL_RESULTS_PATH_PRIVATE)
|
51 |
+
else:
|
52 |
+
eval_queue_private, eval_results_private = None, None
|
53 |
+
|
54 |
+
COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden]
|
55 |
+
TYPES = [c.type for c in fields(AutoEvalColumn) if not c.hidden]
|
56 |
+
COLS_LITE = [c.name for c in fields(AutoEvalColumn) if c.displayed_by_default and not c.hidden]
|
57 |
+
TYPES_LITE = [c.type for c in fields(AutoEvalColumn) if c.displayed_by_default and not c.hidden]
|
58 |
+
|
59 |
+
if not IS_PUBLIC:
|
60 |
+
COLS.insert(2, AutoEvalColumn.precision.name)
|
61 |
+
TYPES.insert(2, AutoEvalColumn.precision.type)
|
62 |
+
|
63 |
+
EVAL_COLS = [c.name for c in fields(EvalQueueColumn)]
|
64 |
+
EVAL_TYPES = [c.type for c in fields(EvalQueueColumn)]
|
65 |
+
|
66 |
+
BENCHMARK_COLS = [c.name for c in [AutoEvalColumn.arc, AutoEvalColumn.hellaswag, AutoEvalColumn.mmlu, AutoEvalColumn.truthfulqa]]
|
67 |
+
|
68 |
+
|
69 |
+
def has_no_nan_values(df, columns):
|
70 |
+
return df[columns].notna().all(axis=1)
|
71 |
+
|
72 |
+
|
73 |
+
def has_nan_values(df, columns):
|
74 |
+
return df[columns].isna().any(axis=1)
|
75 |
+
|
76 |
+
|
77 |
+
def get_leaderboard_df():
|
78 |
+
if eval_results:
|
79 |
+
print("Pulling evaluation results for the leaderboard.")
|
80 |
+
eval_results.git_pull()
|
81 |
+
if eval_results_private:
|
82 |
+
print("Pulling evaluation results for the leaderboard.")
|
83 |
+
eval_results_private.git_pull()
|
84 |
+
|
85 |
+
all_data = get_eval_results_dicts(IS_PUBLIC)
|
86 |
+
|
87 |
+
if not IS_PUBLIC:
|
88 |
+
all_data.append(gpt4_values)
|
89 |
+
all_data.append(gpt35_values)
|
90 |
+
|
91 |
+
all_data.append(baseline)
|
92 |
+
apply_metadata(all_data) # Populate model type based on known hardcoded values in `metadata.py`
|
93 |
+
|
94 |
+
df = pd.DataFrame.from_records(all_data)
|
95 |
+
df = df.sort_values(by=[AutoEvalColumn.average.name], ascending=False)
|
96 |
+
df = df[COLS].round(decimals=2)
|
97 |
+
|
98 |
+
# filter out if any of the benchmarks have not been produced
|
99 |
+
df = df[has_no_nan_values(df, BENCHMARK_COLS)]
|
100 |
+
return df
|
101 |
+
|
102 |
+
|
103 |
+
def get_evaluation_queue_df():
|
104 |
+
if eval_queue:
|
105 |
+
print("Pulling changes for the evaluation queue.")
|
106 |
+
eval_queue.git_pull()
|
107 |
+
if eval_queue_private:
|
108 |
+
print("Pulling changes for the evaluation queue.")
|
109 |
+
eval_queue_private.git_pull()
|
110 |
+
|
111 |
+
entries = [
|
112 |
+
entry
|
113 |
+
for entry in os.listdir(EVAL_REQUESTS_PATH)
|
114 |
+
if not entry.startswith(".")
|
115 |
+
]
|
116 |
+
all_evals = []
|
117 |
+
|
118 |
+
for entry in entries:
|
119 |
+
if ".json" in entry:
|
120 |
+
file_path = os.path.join(EVAL_REQUESTS_PATH, entry)
|
121 |
+
with open(file_path) as fp:
|
122 |
+
data = json.load(fp)
|
123 |
+
|
124 |
+
data["# params"] = "unknown"
|
125 |
+
data["model"] = make_clickable_model(data["model"])
|
126 |
+
data["revision"] = data.get("revision", "main")
|
127 |
+
|
128 |
+
all_evals.append(data)
|
129 |
+
elif ".md" not in entry:
|
130 |
+
# this is a folder
|
131 |
+
sub_entries = [
|
132 |
+
e
|
133 |
+
for e in os.listdir(f"{EVAL_REQUESTS_PATH}/{entry}")
|
134 |
+
if not e.startswith(".")
|
135 |
+
]
|
136 |
+
for sub_entry in sub_entries:
|
137 |
+
file_path = os.path.join(EVAL_REQUESTS_PATH, entry, sub_entry)
|
138 |
+
with open(file_path) as fp:
|
139 |
+
data = json.load(fp)
|
140 |
+
|
141 |
+
# data["# params"] = get_n_params(data["model"])
|
142 |
+
data["model"] = make_clickable_model(data["model"])
|
143 |
+
all_evals.append(data)
|
144 |
+
|
145 |
+
pending_list = [e for e in all_evals if e["status"] in ["PENDING", "RERUN"]]
|
146 |
+
running_list = [e for e in all_evals if e["status"] == "RUNNING"]
|
147 |
+
finished_list = [e for e in all_evals if e["status"].startswith("FINISHED")]
|
148 |
+
df_pending = pd.DataFrame.from_records(pending_list, columns=EVAL_COLS)
|
149 |
+
df_running = pd.DataFrame.from_records(running_list, columns=EVAL_COLS)
|
150 |
+
df_finished = pd.DataFrame.from_records(finished_list, columns=EVAL_COLS)
|
151 |
+
return df_finished[EVAL_COLS], df_running[EVAL_COLS], df_pending[EVAL_COLS]
|
152 |
+
|
153 |
+
|
154 |
+
|
155 |
+
original_df = get_leaderboard_df()
|
156 |
+
leaderboard_df = original_df.copy()
|
157 |
+
(
|
158 |
+
finished_eval_queue_df,
|
159 |
+
running_eval_queue_df,
|
160 |
+
pending_eval_queue_df,
|
161 |
+
) = get_evaluation_queue_df()
|
162 |
+
|
163 |
+
def is_model_on_hub(model_name, revision) -> bool:
|
164 |
+
try:
|
165 |
+
AutoConfig.from_pretrained(model_name, revision=revision)
|
166 |
+
return True, None
|
167 |
+
|
168 |
+
except ValueError as e:
|
169 |
+
return False, "needs to be launched with `trust_remote_code=True`. For safety reason, we do not allow these models to be automatically submitted to the leaderboard."
|
170 |
+
|
171 |
+
except Exception as e:
|
172 |
+
print(f"Could not get the model config from the hub.: {e}")
|
173 |
+
return False, "was not found on hub!"
|
174 |
+
|
175 |
+
|
176 |
+
def add_new_eval(
|
177 |
+
model: str,
|
178 |
+
base_model: str,
|
179 |
+
revision: str,
|
180 |
+
precision: str,
|
181 |
+
private: bool,
|
182 |
+
weight_type: str,
|
183 |
+
model_type: str,
|
184 |
+
):
|
185 |
+
precision = precision.split(" ")[0]
|
186 |
+
current_time = datetime.now(timezone.utc).strftime("%Y-%m-%dT%H:%M:%SZ")
|
187 |
+
|
188 |
+
if model_type is None or model_type == "":
|
189 |
+
return styled_error("Please select a model type.")
|
190 |
+
|
191 |
+
# check the model actually exists before adding the eval
|
192 |
+
if revision == "":
|
193 |
+
revision = "main"
|
194 |
+
|
195 |
+
if weight_type in ["Delta", "Adapter"]:
|
196 |
+
base_model_on_hub, error = is_model_on_hub(base_model, revision)
|
197 |
+
if not base_model_on_hub:
|
198 |
+
return styled_error(f'Base model "{base_model}" {error}')
|
199 |
+
|
200 |
+
|
201 |
+
if not weight_type == "Adapter":
|
202 |
+
model_on_hub, error = is_model_on_hub(model, revision)
|
203 |
+
if not model_on_hub:
|
204 |
+
return styled_error(f'Model "{model}" {error}')
|
205 |
+
|
206 |
+
print("adding new eval")
|
207 |
+
|
208 |
+
eval_entry = {
|
209 |
+
"model": model,
|
210 |
+
"base_model": base_model,
|
211 |
+
"revision": revision,
|
212 |
+
"private": private,
|
213 |
+
"precision": precision,
|
214 |
+
"weight_type": weight_type,
|
215 |
+
"status": "PENDING",
|
216 |
+
"submitted_time": current_time,
|
217 |
+
"model_type": model_type,
|
218 |
+
}
|
219 |
+
|
220 |
+
user_name = ""
|
221 |
+
model_path = model
|
222 |
+
if "/" in model:
|
223 |
+
user_name = model.split("/")[0]
|
224 |
+
model_path = model.split("/")[1]
|
225 |
+
|
226 |
+
OUT_DIR = f"{EVAL_REQUESTS_PATH}/{user_name}"
|
227 |
+
os.makedirs(OUT_DIR, exist_ok=True)
|
228 |
+
out_path = f"{OUT_DIR}/{model_path}_eval_request_{private}_{precision}_{weight_type}.json"
|
229 |
+
|
230 |
+
# Check for duplicate submission
|
231 |
+
if out_path.split("eval-queue/")[1].lower() in requested_models:
|
232 |
+
return styled_warning("This model has been already submitted.")
|
233 |
+
|
234 |
+
with open(out_path, "w") as f:
|
235 |
+
f.write(json.dumps(eval_entry))
|
236 |
+
|
237 |
+
api.upload_file(
|
238 |
+
path_or_fileobj=out_path,
|
239 |
+
path_in_repo=out_path.split("eval-queue/")[1],
|
240 |
+
repo_id=QUEUE_REPO,
|
241 |
+
token=H4_TOKEN,
|
242 |
+
repo_type="dataset",
|
243 |
+
commit_message=f"Add {model} to eval queue",
|
244 |
+
)
|
245 |
+
|
246 |
+
# remove the local file
|
247 |
+
os.remove(out_path)
|
248 |
+
|
249 |
+
return styled_message("Your request has been submitted to the evaluation queue!\nPlease wait for up to an hour for the model to show in the PENDING list.")
|
250 |
+
|
251 |
+
|
252 |
+
def refresh():
|
253 |
+
leaderboard_df = get_leaderboard_df()
|
254 |
+
(
|
255 |
+
finished_eval_queue_df,
|
256 |
+
running_eval_queue_df,
|
257 |
+
pending_eval_queue_df,
|
258 |
+
) = get_evaluation_queue_df()
|
259 |
+
return (
|
260 |
+
leaderboard_df,
|
261 |
+
finished_eval_queue_df,
|
262 |
+
running_eval_queue_df,
|
263 |
+
pending_eval_queue_df,
|
264 |
+
)
|
265 |
+
|
266 |
+
|
267 |
+
def search_table(df, leaderboard_table, query):
|
268 |
+
if AutoEvalColumn.model_type.name in leaderboard_table.columns:
|
269 |
+
filtered_df = df[
|
270 |
+
(df[AutoEvalColumn.dummy.name].str.contains(query, case=False))
|
271 |
+
| (df[AutoEvalColumn.model_type.name].str.contains(query, case=False))
|
272 |
+
]
|
273 |
+
else:
|
274 |
+
filtered_df = df[(df[AutoEvalColumn.dummy.name].str.contains(query, case=False))]
|
275 |
+
return filtered_df[leaderboard_table.columns]
|
276 |
+
|
277 |
+
|
278 |
+
def select_columns(df, columns):
|
279 |
+
always_here_cols = [AutoEvalColumn.model_type_symbol.name, AutoEvalColumn.model.name]
|
280 |
+
# We use COLS to maintain sorting
|
281 |
+
filtered_df = df[always_here_cols + [c for c in COLS if c in df.columns and c in columns] + [AutoEvalColumn.dummy.name]]
|
282 |
+
return filtered_df
|
283 |
+
|
284 |
+
#TODO allow this to filter by values of any columns
|
285 |
+
def filter_items(df, leaderboard_table, query):
|
286 |
+
if query == "all":
|
287 |
+
return df[leaderboard_table.columns]
|
288 |
+
else:
|
289 |
+
query = query[0] #take only the emoji character
|
290 |
+
if AutoEvalColumn.model_type_symbol.name in leaderboard_table.columns:
|
291 |
+
filtered_df = df[(df[AutoEvalColumn.model_type_symbol.name] == query)]
|
292 |
+
else:
|
293 |
+
return leaderboard_table.columns
|
294 |
+
return filtered_df[leaderboard_table.columns]
|
295 |
+
|
296 |
+
def change_tab(query_param):
|
297 |
+
query_param = query_param.replace("'", '"')
|
298 |
+
query_param = json.loads(query_param)
|
299 |
+
|
300 |
+
if (
|
301 |
+
isinstance(query_param, dict)
|
302 |
+
and "tab" in query_param
|
303 |
+
and query_param["tab"] == "evaluation"
|
304 |
+
):
|
305 |
+
return gr.Tabs.update(selected=1)
|
306 |
+
else:
|
307 |
+
return gr.Tabs.update(selected=0)
|
308 |
+
|
309 |
+
|
310 |
+
demo = gr.Blocks(css=custom_css)
|
311 |
+
with demo:
|
312 |
+
gr.HTML(TITLE)
|
313 |
+
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
|
314 |
+
|
315 |
+
with gr.Tabs(elem_classes="tab-buttons") as tabs:
|
316 |
+
with gr.TabItem("π
LLM Benchmark", elem_id="llm-benchmark-tab-table", id=0):
|
317 |
+
with gr.Row():
|
318 |
+
shown_columns = gr.CheckboxGroup(
|
319 |
+
choices = [c for c in COLS if c not in [AutoEvalColumn.dummy.name, AutoEvalColumn.model.name, AutoEvalColumn.model_type_symbol.name]],
|
320 |
+
value = [c for c in COLS_LITE if c not in [AutoEvalColumn.dummy.name, AutoEvalColumn.model.name, AutoEvalColumn.model_type_symbol.name]],
|
321 |
+
label="Select columns to show",
|
322 |
+
elem_id="column-select",
|
323 |
+
interactive=True,
|
324 |
+
)
|
325 |
+
with gr.Column(min_width=320):
|
326 |
+
search_bar = gr.Textbox(
|
327 |
+
placeholder="π Search for your model and press ENTER...",
|
328 |
+
show_label=False,
|
329 |
+
elem_id="search-bar",
|
330 |
+
)
|
331 |
+
filter_columns = gr.Radio(
|
332 |
+
label="β Filter model types",
|
333 |
+
choices = [
|
334 |
+
"all",
|
335 |
+
ModelType.PT.to_str(),
|
336 |
+
ModelType.FT.to_str(),
|
337 |
+
ModelType.IFT.to_str(),
|
338 |
+
ModelType.RL.to_str(),
|
339 |
+
],
|
340 |
+
value="all",
|
341 |
+
elem_id="filter-columns"
|
342 |
+
)
|
343 |
+
leaderboard_table = gr.components.Dataframe(
|
344 |
+
value=leaderboard_df[[AutoEvalColumn.model_type_symbol.name, AutoEvalColumn.model.name] + shown_columns.value+ [AutoEvalColumn.dummy.name]],
|
345 |
+
headers=[AutoEvalColumn.model_type_symbol.name, AutoEvalColumn.model.name] + shown_columns.value + [AutoEvalColumn.dummy.name],
|
346 |
+
datatype=TYPES,
|
347 |
+
max_rows=None,
|
348 |
+
elem_id="leaderboard-table",
|
349 |
+
interactive=False,
|
350 |
+
visible=True,
|
351 |
+
)
|
352 |
+
|
353 |
+
# Dummy leaderboard for handling the case when the user uses backspace key
|
354 |
+
hidden_leaderboard_table_for_search = gr.components.Dataframe(
|
355 |
+
value=original_df,
|
356 |
+
headers=COLS,
|
357 |
+
datatype=TYPES,
|
358 |
+
max_rows=None,
|
359 |
+
visible=False,
|
360 |
+
)
|
361 |
+
search_bar.submit(
|
362 |
+
search_table,
|
363 |
+
[hidden_leaderboard_table_for_search, leaderboard_table, search_bar],
|
364 |
+
leaderboard_table,
|
365 |
+
)
|
366 |
+
shown_columns.change(select_columns, [hidden_leaderboard_table_for_search, shown_columns], leaderboard_table)
|
367 |
+
filter_columns.change(filter_items, [hidden_leaderboard_table_for_search, leaderboard_table, filter_columns], leaderboard_table)
|
368 |
+
with gr.TabItem("π About", elem_id="llm-benchmark-tab-table", id=2):
|
369 |
+
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
|
370 |
+
|
371 |
+
with gr.TabItem("π Submit here! ", elem_id="llm-benchmark-tab-table", id=3):
|
372 |
+
with gr.Column():
|
373 |
+
with gr.Row():
|
374 |
+
gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")
|
375 |
+
|
376 |
+
with gr.Column():
|
377 |
+
with gr.Accordion(f"β
Finished Evaluations ({len(finished_eval_queue_df)})", open=False):
|
378 |
+
with gr.Row():
|
379 |
+
finished_eval_table = gr.components.Dataframe(
|
380 |
+
value=finished_eval_queue_df,
|
381 |
+
headers=EVAL_COLS,
|
382 |
+
datatype=EVAL_TYPES,
|
383 |
+
max_rows=5,
|
384 |
+
)
|
385 |
+
with gr.Accordion(f"π Running Evaluation Queue ({len(running_eval_queue_df)})", open=False):
|
386 |
+
with gr.Row():
|
387 |
+
running_eval_table = gr.components.Dataframe(
|
388 |
+
value=running_eval_queue_df,
|
389 |
+
headers=EVAL_COLS,
|
390 |
+
datatype=EVAL_TYPES,
|
391 |
+
max_rows=5,
|
392 |
+
)
|
393 |
+
|
394 |
+
with gr.Accordion(f"β³ Pending Evaluation Queue ({len(pending_eval_queue_df)})", open=False):
|
395 |
+
with gr.Row():
|
396 |
+
pending_eval_table = gr.components.Dataframe(
|
397 |
+
value=pending_eval_queue_df,
|
398 |
+
headers=EVAL_COLS,
|
399 |
+
datatype=EVAL_TYPES,
|
400 |
+
max_rows=5,
|
401 |
+
)
|
402 |
+
with gr.Row():
|
403 |
+
gr.Markdown("# βοΈβ¨ Submit your model here!", elem_classes="markdown-text")
|
404 |
+
|
405 |
+
with gr.Row():
|
406 |
+
with gr.Column():
|
407 |
+
model_name_textbox = gr.Textbox(label="Model name")
|
408 |
+
revision_name_textbox = gr.Textbox(
|
409 |
+
label="revision", placeholder="main"
|
410 |
+
)
|
411 |
+
private = gr.Checkbox(
|
412 |
+
False, label="Private", visible=not IS_PUBLIC
|
413 |
+
)
|
414 |
+
model_type = gr.Dropdown(
|
415 |
+
choices=[
|
416 |
+
ModelType.PT.to_str(" : "),
|
417 |
+
ModelType.FT.to_str(" : "),
|
418 |
+
ModelType.IFT.to_str(" : "),
|
419 |
+
ModelType.RL.to_str(" : "),
|
420 |
+
],
|
421 |
+
label="Model type",
|
422 |
+
multiselect=False,
|
423 |
+
value=None,
|
424 |
+
interactive=True,
|
425 |
+
)
|
426 |
+
|
427 |
+
with gr.Column():
|
428 |
+
precision = gr.Dropdown(
|
429 |
+
choices=["float16", "bfloat16", "8bit (LLM.int8)", "4bit (QLoRA / FP4)"],
|
430 |
+
label="Precision",
|
431 |
+
multiselect=False,
|
432 |
+
value="float16",
|
433 |
+
interactive=True,
|
434 |
+
)
|
435 |
+
weight_type = gr.Dropdown(
|
436 |
+
choices=["Original", "Delta", "Adapter"],
|
437 |
+
label="Weights type",
|
438 |
+
multiselect=False,
|
439 |
+
value="Original",
|
440 |
+
interactive=True,
|
441 |
+
)
|
442 |
+
base_model_name_textbox = gr.Textbox(
|
443 |
+
label="Base model (for delta or adapter weights)"
|
444 |
+
)
|
445 |
+
|
446 |
+
submit_button = gr.Button("Submit Eval")
|
447 |
+
submission_result = gr.Markdown()
|
448 |
+
submit_button.click(
|
449 |
+
add_new_eval,
|
450 |
+
[
|
451 |
+
model_name_textbox,
|
452 |
+
base_model_name_textbox,
|
453 |
+
revision_name_textbox,
|
454 |
+
precision,
|
455 |
+
private,
|
456 |
+
weight_type,
|
457 |
+
model_type
|
458 |
+
],
|
459 |
+
submission_result,
|
460 |
+
)
|
461 |
+
|
462 |
+
with gr.Row():
|
463 |
+
refresh_button = gr.Button("Refresh")
|
464 |
+
refresh_button.click(
|
465 |
+
refresh,
|
466 |
+
inputs=[],
|
467 |
+
outputs=[
|
468 |
+
leaderboard_table,
|
469 |
+
finished_eval_table,
|
470 |
+
running_eval_table,
|
471 |
+
pending_eval_table,
|
472 |
+
],
|
473 |
+
)
|
474 |
+
|
475 |
+
with gr.Row():
|
476 |
+
with gr.Accordion("π Citation", open=False):
|
477 |
+
citation_button = gr.Textbox(
|
478 |
+
value=CITATION_BUTTON_TEXT,
|
479 |
+
label=CITATION_BUTTON_LABEL,
|
480 |
+
elem_id="citation-button",
|
481 |
+
).style(show_copy_button=True)
|
482 |
|
483 |
+
dummy = gr.Textbox(visible=False)
|
484 |
+
demo.load(
|
485 |
+
change_tab,
|
486 |
+
dummy,
|
487 |
+
tabs,
|
488 |
+
_js=get_window_url_params,
|
489 |
+
)
|
490 |
|
491 |
+
scheduler = BackgroundScheduler()
|
492 |
+
scheduler.add_job(restart_space, "interval", seconds=3600)
|
493 |
+
scheduler.start()
|
494 |
+
demo.queue(concurrency_count=40).launch()
|