Spaces:
Restarting
on
CPU Upgrade
Restarting
on
CPU Upgrade
Sean Cho
commited on
Commit
·
6cdd0ad
1
Parent(s):
adf26ec
Apply snapshot download
Browse files- app.py +29 -19
- model_info_cache.pkl +2 -2
- model_size_cache.pkl +2 -2
- src/display_models/read_results.py +4 -4
- src/load_from_hub.py +5 -50
app.py
CHANGED
@@ -7,7 +7,7 @@ from distutils.util import strtobool
|
|
7 |
import gradio as gr
|
8 |
import pandas as pd
|
9 |
from apscheduler.schedulers.background import BackgroundScheduler
|
10 |
-
from huggingface_hub import HfApi
|
11 |
|
12 |
from src.assets.css_html_js import custom_css, get_window_url_params
|
13 |
from src.assets.text_content import (
|
@@ -28,7 +28,7 @@ from src.display_models.utils import (
|
|
28 |
styled_message,
|
29 |
styled_warning,
|
30 |
)
|
31 |
-
from src.load_from_hub import get_evaluation_queue_df, get_leaderboard_df, is_model_on_hub
|
32 |
from src.rate_limiting import user_submission_permission
|
33 |
|
34 |
pd.set_option("display.precision", 1)
|
@@ -86,22 +86,12 @@ BENCHMARK_COLS = [
|
|
86 |
]
|
87 |
]
|
88 |
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
)
|
93 |
-
|
94 |
-
if not IS_PUBLIC:
|
95 |
-
(eval_queue_private, requested_models_private, eval_results_private, _) = load_all_info_from_hub(
|
96 |
-
PRIVATE_QUEUE_REPO,
|
97 |
-
PRIVATE_RESULTS_REPO,
|
98 |
-
EVAL_REQUESTS_PATH_PRIVATE,
|
99 |
-
EVAL_RESULTS_PATH_PRIVATE,
|
100 |
-
)
|
101 |
-
else:
|
102 |
-
eval_queue_private, eval_results_private = None, None
|
103 |
|
104 |
-
original_df = get_leaderboard_df(
|
|
|
105 |
models = original_df["model_name_for_query"].tolist() # needed for model backlinks in their to the leaderboard
|
106 |
|
107 |
# Commented out because it causes infinite restart loops in local
|
@@ -112,13 +102,12 @@ models = original_df["model_name_for_query"].tolist() # needed for model backlin
|
|
112 |
|
113 |
# print(to_be_dumped)
|
114 |
|
115 |
-
leaderboard_df = original_df.copy()
|
116 |
(
|
117 |
finished_eval_queue_df,
|
118 |
running_eval_queue_df,
|
119 |
pending_eval_queue_df,
|
120 |
failed_eval_queue_df,
|
121 |
-
) = get_evaluation_queue_df(
|
122 |
|
123 |
## INTERACTION FUNCTIONS
|
124 |
def add_new_eval(
|
@@ -157,6 +146,27 @@ def add_new_eval(
|
|
157 |
model_on_hub, error = is_model_on_hub(model, revision)
|
158 |
if not model_on_hub:
|
159 |
return styled_error(f'Model "{model}" {error}')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
160 |
|
161 |
print("adding new eval")
|
162 |
|
|
|
7 |
import gradio as gr
|
8 |
import pandas as pd
|
9 |
from apscheduler.schedulers.background import BackgroundScheduler
|
10 |
+
from huggingface_hub import HfApi, snapshot_download
|
11 |
|
12 |
from src.assets.css_html_js import custom_css, get_window_url_params
|
13 |
from src.assets.text_content import (
|
|
|
28 |
styled_message,
|
29 |
styled_warning,
|
30 |
)
|
31 |
+
from src.load_from_hub import get_all_requested_models, get_evaluation_queue_df, get_leaderboard_df, is_model_on_hub
|
32 |
from src.rate_limiting import user_submission_permission
|
33 |
|
34 |
pd.set_option("display.precision", 1)
|
|
|
86 |
]
|
87 |
]
|
88 |
|
89 |
+
snapshot_download(repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", tqdm_class=None)
|
90 |
+
snapshot_download(repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None)
|
91 |
+
requested_models, users_to_submission_dates = get_all_requested_models(EVAL_REQUESTS_PATH)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
92 |
|
93 |
+
original_df = get_leaderboard_df(EVAL_RESULTS_PATH, COLS, BENCHMARK_COLS)
|
94 |
+
leaderboard_df = original_df.copy()
|
95 |
models = original_df["model_name_for_query"].tolist() # needed for model backlinks in their to the leaderboard
|
96 |
|
97 |
# Commented out because it causes infinite restart loops in local
|
|
|
102 |
|
103 |
# print(to_be_dumped)
|
104 |
|
|
|
105 |
(
|
106 |
finished_eval_queue_df,
|
107 |
running_eval_queue_df,
|
108 |
pending_eval_queue_df,
|
109 |
failed_eval_queue_df,
|
110 |
+
) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)
|
111 |
|
112 |
## INTERACTION FUNCTIONS
|
113 |
def add_new_eval(
|
|
|
146 |
model_on_hub, error = is_model_on_hub(model, revision)
|
147 |
if not model_on_hub:
|
148 |
return styled_error(f'Model "{model}" {error}')
|
149 |
+
|
150 |
+
model_info = api.model_info(repo_id=model, revision=revision)
|
151 |
+
|
152 |
+
size_pattern = re.compile(r"(\d+\.)?\d+(b|m)")
|
153 |
+
try:
|
154 |
+
model_size = round(model_info.safetensors["total"] / 1e9, 3)
|
155 |
+
except AttributeError:
|
156 |
+
try:
|
157 |
+
size_match = re.search(size_pattern, model.lower())
|
158 |
+
model_size = size_match.group(0)
|
159 |
+
model_size = round(float(model_size[:-1]) if model_size[-1] == "b" else float(model_size[:-1]) / 1e3, 3)
|
160 |
+
except AttributeError:
|
161 |
+
return 65
|
162 |
+
|
163 |
+
size_factor = 8 if (precision == "GPTQ" or "GPTQ" in model) else 1
|
164 |
+
model_size = size_factor * model_size
|
165 |
+
|
166 |
+
try:
|
167 |
+
license = model_info.cardData["license"]
|
168 |
+
except Exception:
|
169 |
+
license = "?"
|
170 |
|
171 |
print("adding new eval")
|
172 |
|
model_info_cache.pkl
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:337f1fb80e92327e7c7b130c03617439f7923e3f7c5383f5abb07e017ef9cae3
|
3 |
+
size 715983
|
model_size_cache.pkl
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:64d63b51e6f5d6dd985b44ef6ddf513d9a7a138e734d77ae7382fd7a49a137ea
|
3 |
+
size 20652
|
src/display_models/read_results.py
CHANGED
@@ -113,10 +113,10 @@ def parse_eval_result(json_filepath: str) -> Tuple[str, list[dict]]:
|
|
113 |
return result_key, eval_results
|
114 |
|
115 |
|
116 |
-
def get_eval_results() -> List[EvalResult]:
|
117 |
json_filepaths = []
|
118 |
|
119 |
-
for root, dir, files in os.walk(
|
120 |
# We should only have json files in model results
|
121 |
if len(files) == 0 or any([not f.endswith(".json") for f in files]):
|
122 |
continue
|
@@ -146,7 +146,7 @@ def get_eval_results() -> List[EvalResult]:
|
|
146 |
return eval_results
|
147 |
|
148 |
|
149 |
-
def get_eval_results_dicts() -> List[Dict]:
|
150 |
-
eval_results = get_eval_results()
|
151 |
|
152 |
return [e.to_dict() for e in eval_results]
|
|
|
113 |
return result_key, eval_results
|
114 |
|
115 |
|
116 |
+
def get_eval_results(results_path: str) -> List[EvalResult]:
|
117 |
json_filepaths = []
|
118 |
|
119 |
+
for root, dir, files in os.walk(results_path + ("-private" if not IS_PUBLIC else "")):
|
120 |
# We should only have json files in model results
|
121 |
if len(files) == 0 or any([not f.endswith(".json") for f in files]):
|
122 |
continue
|
|
|
146 |
return eval_results
|
147 |
|
148 |
|
149 |
+
def get_eval_results_dicts(results_path: str) -> List[Dict]:
|
150 |
+
eval_results = get_eval_results(results_path)
|
151 |
|
152 |
return [e.to_dict() for e in eval_results]
|
src/load_from_hub.py
CHANGED
@@ -1,10 +1,9 @@
|
|
1 |
import json
|
2 |
import os
|
|
|
3 |
|
4 |
import pandas as pd
|
5 |
-
from huggingface_hub import Repository
|
6 |
from transformers import AutoConfig
|
7 |
-
from collections import defaultdict
|
8 |
|
9 |
from src.assets.hardcoded_evals import baseline
|
10 |
from src.display_models.get_model_metadata import apply_metadata
|
@@ -35,43 +34,8 @@ def get_all_requested_models(requested_models_dir: str) -> set[str]:
|
|
35 |
return set(file_names), users_to_submission_dates
|
36 |
|
37 |
|
38 |
-
def
|
39 |
-
|
40 |
-
eval_results_repo = None
|
41 |
-
requested_models = None
|
42 |
-
|
43 |
-
print("Pulling evaluation requests and results.")
|
44 |
-
|
45 |
-
eval_queue_repo = Repository(
|
46 |
-
local_dir=QUEUE_PATH,
|
47 |
-
clone_from=QUEUE_REPO,
|
48 |
-
repo_type="dataset",
|
49 |
-
)
|
50 |
-
eval_queue_repo.git_pull()
|
51 |
-
|
52 |
-
eval_results_repo = Repository(
|
53 |
-
local_dir=RESULTS_PATH,
|
54 |
-
clone_from=RESULTS_REPO,
|
55 |
-
repo_type="dataset",
|
56 |
-
)
|
57 |
-
eval_results_repo.git_pull()
|
58 |
-
|
59 |
-
requested_models, users_to_submission_dates = get_all_requested_models("eval-queue")
|
60 |
-
|
61 |
-
return eval_queue_repo, requested_models, eval_results_repo, users_to_submission_dates
|
62 |
-
|
63 |
-
|
64 |
-
def get_leaderboard_df(
|
65 |
-
eval_results: Repository, eval_results_private: Repository, cols: list, benchmark_cols: list
|
66 |
-
) -> pd.DataFrame:
|
67 |
-
if eval_results:
|
68 |
-
print("Pulling evaluation results for the leaderboard.")
|
69 |
-
eval_results.git_pull()
|
70 |
-
if eval_results_private:
|
71 |
-
print("Pulling evaluation results for the leaderboard.")
|
72 |
-
eval_results_private.git_pull()
|
73 |
-
|
74 |
-
all_data = get_eval_results_dicts()
|
75 |
|
76 |
# all_data.append(baseline)
|
77 |
apply_metadata(all_data) # Populate model type based on known hardcoded values in `metadata.py`
|
@@ -85,15 +49,7 @@ def get_leaderboard_df(
|
|
85 |
return df
|
86 |
|
87 |
|
88 |
-
def get_evaluation_queue_df(
|
89 |
-
eval_queue: Repository, eval_queue_private: Repository, save_path: str, cols: list
|
90 |
-
) -> list[pd.DataFrame]:
|
91 |
-
if eval_queue:
|
92 |
-
print("Pulling changes for the evaluation queue.")
|
93 |
-
eval_queue.git_pull()
|
94 |
-
if eval_queue_private:
|
95 |
-
print("Pulling changes for the evaluation queue.")
|
96 |
-
eval_queue_private.git_pull()
|
97 |
|
98 |
entries = [entry for entry in os.listdir(save_path) if not entry.startswith(".")]
|
99 |
all_evals = []
|
@@ -143,6 +99,5 @@ def is_model_on_hub(model_name: str, revision: str) -> bool:
|
|
143 |
"needs to be launched with `trust_remote_code=True`. For safety reason, we do not allow these models to be automatically submitted to the leaderboard.",
|
144 |
)
|
145 |
|
146 |
-
except Exception
|
147 |
-
print(f"Could not get the model config from the hub.: {e}")
|
148 |
return False, "was not found on hub!"
|
|
|
1 |
import json
|
2 |
import os
|
3 |
+
from collections import defaultdict
|
4 |
|
5 |
import pandas as pd
|
|
|
6 |
from transformers import AutoConfig
|
|
|
7 |
|
8 |
from src.assets.hardcoded_evals import baseline
|
9 |
from src.display_models.get_model_metadata import apply_metadata
|
|
|
34 |
return set(file_names), users_to_submission_dates
|
35 |
|
36 |
|
37 |
+
def get_leaderboard_df(results_path: str, cols: list, benchmark_cols: list) -> pd.DataFrame:
|
38 |
+
all_data = get_eval_results_dicts(results_path)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
|
40 |
# all_data.append(baseline)
|
41 |
apply_metadata(all_data) # Populate model type based on known hardcoded values in `metadata.py`
|
|
|
49 |
return df
|
50 |
|
51 |
|
52 |
+
def get_evaluation_queue_df(save_path: str, cols: list) -> list[pd.DataFrame]:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
|
54 |
entries = [entry for entry in os.listdir(save_path) if not entry.startswith(".")]
|
55 |
all_evals = []
|
|
|
99 |
"needs to be launched with `trust_remote_code=True`. For safety reason, we do not allow these models to be automatically submitted to the leaderboard.",
|
100 |
)
|
101 |
|
102 |
+
except Exception:
|
|
|
103 |
return False, "was not found on hub!"
|