File size: 5,426 Bytes
1f4f7c2
 
 
 
281f2f2
1f4f7c2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
281f2f2
1f4f7c2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
281f2f2
 
1f4f7c2
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
import os
from threading import Thread
from typing import Iterator

import gradio as gr
#import spaces
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer

MAX_MAX_NEW_TOKENS = 2048
DEFAULT_MAX_NEW_TOKENS = 1024
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

# Download model from Huggingface Hub
# Change this to meta-llama or the correct org name from Huggingface Hub
model_id = "ussipan/SipanGPT-0.1-Llama-3.2-1B-GGUF"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(
    model_id,
    device_map="auto",
    torch_dtype=torch.bfloat16,
)
model.eval()

# Main Gradio inference function
def generate(
    message: str,
    chat_history: list[tuple[str, str]],
    max_new_tokens: int = 1024,
    temperature: float = 0.6,
    top_p: float = 0.9,
    top_k: int = 50,
    repetition_penalty: float = 1.2,
) -> Iterator[str]:

    conversation = [{k: v for k, v in d.items() if k != 'metadata'} for d in chat_history]
    conversation.append({"role": "user", "content": message})

    input_ids = tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt")
    if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
        input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
        gr.Warning(f"Se recortó la entrada de la conversación porque era más larga que {MAX_INPUT_TOKEN_LENGTH} tokens.")
    input_ids = input_ids.to(model.device)

    streamer = TextIteratorStreamer(tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True)
    generate_kwargs = dict(
        {"input_ids": input_ids},
        streamer=streamer,
        max_new_tokens=max_new_tokens,
        do_sample=True,
        top_p=top_p,
        top_k=top_k,
        temperature=temperature,
        num_beams=1,
        repetition_penalty=repetition_penalty,
    )
    t = Thread(target=model.generate, kwargs=generate_kwargs)
    t.start()

    conversation.append({"role": "assistant", "content": ""})
    outputs = []
    for text in streamer:
        outputs.append(text)
        bot_response = "".join(outputs)
        conversation[-1]['content'] = bot_response
        yield "", conversation


# Implementing Gradio 5 features and building a ChatInterface UI yourself
PLACEHOLDER = """<div style="padding: 20px; text-align: center; display: flex; flex-direction: column; align-items: center;">
   <img src="https://corladlalibertad.org.pe/wp-content/uploads/2024/01/USS.jpg" style="width: 80%; max-width: 550px; height: auto; opacity: 0.55; margin-bottom: 10px;">
   <h1 style="font-size: 28px; margin: 0;">SipánGPT 0.1 Llama 3.2</h1>
   <p style="font-size: 8px; margin: 5px 0 0; opacity: 0.65;">
       <a href="https://huggingface.co/spaces/ysharma/Llama3-2_with_Gradio-5" target="_blank" style="color: inherit; text-decoration: none;">Source Code</a>
   </p>
</div>"""


def handle_retry(history, retry_data: gr.RetryData):
    new_history = history[:retry_data.index]
    previous_prompt = history[retry_data.index]['content']
    yield from generate(previous_prompt, chat_history = new_history, max_new_tokens = 1024, temperature = 0.6, top_p = 0.9, top_k = 50, repetition_penalty = 1.2)

def handle_like(data: gr.LikeData):
    if data.liked:
        print("Votaste positivamente esta respuesta: ", data.value)
    else:
        print("Votaste negativamente esta respuesta: ", data.value)

def handle_undo(history, undo_data: gr.UndoData):
    chatbot = history[:undo_data.index]
    prompt = history[undo_data.index]['content']
    return chatbot, prompt

def chat_examples_fill(data: gr.SelectData):
    yield from generate(data.value['text'], chat_history = [], max_new_tokens = 1024, temperature = 0.6, top_p = 0.9, top_k = 50, repetition_penalty = 1.2)


with gr.Blocks(theme=gr.themes.Soft(), fill_height=True) as demo:
    with gr.Column(elem_id="container", scale=1):
        chatbot = gr.Chatbot(
            label="SipánGPT 0.1 Llama 3.2",
            show_label=False,
            type="messages",
            scale=1,
            suggestions = [
                {"text": "Háblame del reglamento de estudiantes de la universidad"},
                {"text": "Qué becas ofrece la universidad"},
                ],
            placeholder = PLACEHOLDER,
            )

    msg = gr.Textbox(submit_btn=True, show_label=False)
    with gr.Accordion('Additional inputs', open=False):
        max_new_tokens = gr.Slider(label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS, )
        temperature = gr.Slider(label="Temperature",minimum=0.1, maximum=4.0, step=0.1, value=0.6,)
        top_p = gr.Slider(label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=0.9, )
        top_k = gr.Slider(label="Top-k", minimum=1, maximum=1000, step=1, value=50, )
        repetition_penalty = gr.Slider(label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.2, )

    msg.submit(generate, [msg, chatbot, max_new_tokens, temperature, top_p, top_k, repetition_penalty], [msg, chatbot])
    chatbot.retry(handle_retry, chatbot, [msg, chatbot])
    chatbot.like(handle_like, None, None)
    chatbot.undo(handle_undo, chatbot, [chatbot, msg])
    chatbot.suggestion_select(chat_examples_fill, None, [msg, chatbot] )


demo.launch()